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Abstract. Copulas offer a flexible tool for a stochastic dependence mod-
eling. One of the most popular classes of copulas is the class of hierarchical
Archimedean copulas, which gained its popularity due to the fact that the
models from the class are able to model the stochastic dependencies conve-
niently even in high dimensions. One critical issue when estimating a hierar-
chical Archimedean copula is to correctly determine its structure. The paper
describes an approach to the problem of the structure determination of a hi-
erarchical Archimedean copula, which is based on the close relationship of the
copula structure and the values of measure of concordance computed on all its
bivariate margins. The presented approach is conveniently summarized as a
simple algorithm.
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1 Introduction

Hierarchical Archimedean copulas (HACs), which generalize Archimedean copulas (ACs), overcome some
limitations and bring some advantages compared to the most popular class of Gaussian copulas [2]. There
already emerged successful applications of HACs in finance, e.g., in collateral debt obligation pricing, see
[2, 5]. One critical issue when estimating HAC is to properly determine its structure. Despite the
popularity of HACs, there exists only one paper [9] addressing generally the structure determination.
The method presented in that paper mainly focus on maximum likelihood estimation (MLE) for the
estimation of HAC’s parameters, which are later used for the structure determination. The MLE used
in the method involves the computation of the density of a HAC that needs up to d derivatives, where d
is the data dimension. The authors claim, that the approach is feasible in high dimensions when using
numerical method for the density computation and present two examples for d = 5, which involves only
homogeneous HAC and which incorporates ACs belonging to one Archimedean family. Our approach
provides an alternative way to the problem, which completely avoids the need of the HAC’s density
computation for some Archimedean families, hence is feasible even in very high dimensions.

The paper is structured as follows. The second section recalls some necessary theoretical concepts
concerning copulas, the third section presents the proposed approach to the structure determination of
HAC and the fourth section concludes the paper.

2 Preliminaries

2.1 Copulas

Definition 1. For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is a d-variate distribution
function on Id (I is unit interval), whose univariate margins are uniformly distributed on I.

At the first look, copulas (denote the set of all copulas as C) form one of many classes of joint
distribution functions (shortly, joint d.f.s). What makes copulas interesting is that they establish a
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connection between general joint d.f. and its univariate margins (in text below we use only margin for
term univariate margin).

Theorem 1. (Sklar’s Theorem) [10] Let H be a d-dimensional d.f. with margins F1, ..., Fd. Let Aj
denote the range of Fj, Aj := Fj(R)(j = 1, ..., d),R := R ∪ {−∞,+∞}. Than there exists a copula C

such for all (x1, ..., xd) ∈ Rd,

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (1)

Such a C is uniquely determined on A1× ...×Ad and, hence, it is unique if F1, ..., Fd are all continuous.

Through the Sklar’s theorem, one can derive for any d-variate d.f. its copula C using (1). In case that
the margins F1, ..., Fd are all continuous, copula C is given by C(u1, ..., ud) = H(F−1 (u1), ..., F−d (ud)),
where F−i , i ∈ {1, ..., d} denotes pseudo-inverse of Fi given by F−i (s) = inf{t| Fi(t) ≥ s}, s ∈ I. Many
classes of copulas are derived in this way from popular joint d.f.s, e.g., the most popular class of Gaussian
copulas is derived using H corresponding to d-variate Gaussian distribution. But, using this process often
results in copula forms not representable in closed form, what can bring difficulties in some applications.

2.2 Archimedean Copulas

This drawback is overcame while using Archimedean copulas due to their different construction process.
ACs are not constructed using thr Sklar’s theorem, but instead of it, one starts with a given functional
form and asks for properties in order to obtain a proper copula. As a result of such a construction, ACs
are always expressed in closed form, which is one of the main advantages of this class of copulas [3]. To
construct ACs we need a notion of an Archimedean generator and a complete monotonicity.

Definition 2. Archimedean generator (shortly, generator) is continuous, nonincreasing function ψ :
[0,∞]→ [0, 1], which satisfies ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0 and is strictly decreasing on [0, inf{t :
ψ(t) = 0}].

Remark 1. We denote set of all generators as Ψ.

Definition 3. Function f is called completely monotone (shortly, c.m.) on [a, b], if (−1)kf (k)(x) ≥ 0
holds for every k ∈ N0, x ∈ (a, b).

Definition 4. Any d-copula C is called Archimedean copula (we denote it d-AC), if it admits the form

C(u) := C(u;ψ) := ψ(ψ−1(u1) + ...+ ψ−1(ud)),u ∈ Id, (2)

where ψ ∈ Ψ and its inverse ψ−1 : [0, 1]→ [0,∞] is defined ψ−1(0) = inf{t : ψ(t) = 0}.

For verifying whether function C given by (2) is a proper copula, we can use the property stated in
Definiton 3. A condition sufficient1 for C to be a copula is stated as follows.

Theorem 2. If ψ ∈ Ψ is completely monotone, then function C given by (2) is copula.

We can see from Definition 4 that having a random vector U distributed according to some AC,
all its k-dimensional (k < d) marginal copulas have the same marginal distribution. It implies that all
multivariate margins of the same dimension are equal, thus, e.g., the dependence among all pairs of
components is identical. This symmetry of ACs is often considered to be a rather strong restriction,
especially in high dimensional applications.

2.3 Hierarchical Archimedean Copulas

To allow for asymmetries, one may consider the class of HACs2, recursively defined as follows.

Definition 5. A d-dimensional copula C is called hierarchical Archimedean copula if it is an AC with
arguments possibly replaced by other hierarchical Archimedean copulas. If C is given recursively by (2)
for d = 2 and

C(u;ψ0, ..., ψd−2) = ψ0(ψ−10 (u1) + ψ−10 (C(u2, ..., ud;ψ1, ..., ψd−2))),u ∈ Id, (3)
1Necessary and sufficient condition for C to be a copula can be found in [6]
2often also called nested Archimedean copulas



for d ≥ 3, C is called fully-nested hierarchical Archimedean copula with d − 1 nesting levels. Otherwise
C is called partilally-nested hierarchical Archimedean copula. [4]

Remark 2. We denote a d-dimensional HAC as d-HAC. We refer to the hierarchical ordering of C(·;ψ0), ...,
C(·;ψd−2) together with the ordering of variables u1, ..., ud as the structure of a d-HAC.

From the definition, we can see that ACs are special cases of HACs. The most simple proper fully-
nested HAC is copula C obtained for d = 3 with two nesting levels. The structure of this copula is given
by

C(u;ψ0, ψ1) = C(u1, C(u2, u3;ψ1);ψ0)

= ψ0(ψ−10 (u1) + ψ−10 (ψ1(ψ−11 (u2) + ψ−11 (u3)))),u ∈ I3. (4)

As in the case of ACs we can ask for necessary and sufficient condition for function C given by (3) to
be a proper copula. Partial answer for this question in form of sufficient condition is contained in the
following theorem [6].

Theorem 3. (McNeil (2009)). If ψj ∈ Ψ∞, j ∈ {0, ..., d − 2} such that ψ−1k ◦ ψk+1 have completely
monotone derivatives for all k ∈ {0, ..., d− 3}, then C(u;ψ0, ..., ψd−2),u ∈ Id, given by (3) is a copula.

If we take the most simple 3-HAC given by (4), we can see that the condition for C to be a proper
copula following from McNeil’s theorem is (ψ−10 ◦ψ1)′ to be completely monotone. As this condition will
be essential for the rest of this paper we put it in individual definition.

Definition 6. Let ψa, ψb ∈ Ψ∞, a, b ∈ {0, ..., d− 2}, a 6= b and C(·;ψa) corresponds to parent of C(·;ψb)
in the tree structure of C. Then condition for (ψ−1a ◦ ψb)′ to be compete monotone is called nesting
condition.

As we can observe, verification of conditions in McNeil’s theorem is just d− 2 verifications of nesting
condition for d − 2 different pairs ψk, ψk+1, k ∈ {0, ..., d − 2}. McNeil’s theorem is stated only for fully-
nested HACs, but it can be easily translated also for use with partially-nested HACs.

For the sake of simplicity, assume that each d-HAC structure corresponds to some binary tree t.
Each node in t represents one 2-AC. Each 2-AC is determined just by its corresponding generator, so we
identify each node in t with one generator and hence we have always nodes ψ0, ..., ψd−2. For a node ψ
denote as Dn(ψ) the set of all descendant nodes of ψ, P(ψ) the parent node of ψ, Hl(ψ) the left child of
ψ and Hr(ψ) the right child of ψ. The leafs of t correspond to the variables u1, ..., ud.

2.4 Measure of concordance

A measure of concordance (MoC) is a measure, which reflects a degree of dependency between two random
variables independently on their univariate distributions. There also exist generalizations for more than
two random variables, but we present only pairwise measure of concordance. As C allows for partial
ordering known as concordance ordering, a measure of concordance also reflects this ordering (see [3, 7]).
One of the most popular measures of concordance is Kendall’s tau. As we are interested in its relationship
with a general bivariate copula, we use its the definition given by (as in [1])

τ(C) = 4

∫
I2
C(u1, u2)dC(u1, u2)− 1. (5)

If C is 2-AC based on a generator ψ and ψdepends on the parameter θ, then (5) states a relationship
between θ and τ . This relationship is very important for our approach and is used extensively later in
Section 3.

2.5 Okhrin’s algorithm for the structure determination of HAC

We recall the algorithm presented in [8] for the structure determination of HAC, which returns for some
unknown HAC C its structure using only the known forms of its bivariate margins. The algorithm uses
the following definition.

Definition 7. Let C be a d-HAC with generators ψ0, ..., ψd−2 and (U1, ..., Ud) ∼ C. Then denote as
UC(ψk), k = 0, ..., d−2, the set of indexes UC(ψk) = {i|(∃Uj)(Ui, Uj) ∼ C(·;ψk)∨ (Uj , Ui) ∼ C(·;ψk), 1 ≤
i < j ≤ d}, k = 0, ..., d− 2.



Proposition 4. Defining UC(ui) = {i} for the leaf i, 1 ≤ i ≤ d, there is an unique disjunctive decompo-
sition of UC(ψk) given by

UC(ψk) = UC(Hl(ψk)) ∪ UC(Hr(ψk)). (6)

Due to space limitations we do not state the proof for the proposition and we refer the reader to the
Okhrin’s work [8], which includes detailed description of the method and the necessary proofs.

For an unknown d-HAC C, knowing all its bivariate margins, its structure can be easily determined
with Algorithm 1, which returns the unknown structure t of C. We start from the sets UC(u1), ...,UC(ud)
joining them together through (6) until we reach the node ψ for which UC(ψ) = {1, ..., d}.

Algorithm 1 The HAC structure determination

I = {0, ..., d− 2}
while I 6= ∅ do

1. k = argmini∈I(#UC(ψi)), if there are more minima, then choose as k one of them arbitrarily.
2. Find the nodes ψl, ψr, for which UC(ψk) = UC(ψl) ∪ UC(ψr).
3. Hl(ψk) := ψl,Hr(ψk) := ψr.
4. Set I := I\{k}.

end while

3 Our approach

Recalling Theorem 3, the sufficient condition for C to be a proper copula is, that the nesting condition
must hold for each generator and its parent in a HAC structure. As this is the only known condition that
assures that C is a proper copula, we concern in this work only the copulas, which fulfill this condition.
The nesting condition results in constraints for the parameters θ0, θ1 of the involved generators ψ0, ψ1

(see [4, 3]). As θi, i = 1, 2 is closely related to a MoC, e.g. τ and θi relationship established through
(5), there is also an important relationship between the MoC and the HAC tree structure following from
the nesting condition. This relationship is described for the fully-nested 3-HAC given by the form (4) in
Remark 2.3.2 in [3]. There is stated that if the nesting condition holds for the parent-child pair (ψ0, ψ1),
then 0 ≤ κ(ψ0) ≤ κ(ψ1), where κ is a MoC (as we concern only HACs with binary structures, which
incorporates only 2-ACs, which are fully determined only by its generator, we use as domain of κ the set
Ψ instead of the usually used set of all 2-copulas). We generalize this statement, using our notion, as
follows.

Proposition 5. Let C be a d-HAC with the structure t and the generators ψ0, ..., ψd−2, where each
parent-child pair satisfy the nesting condition. Let κ be a MoC. Than κ(ψi) ≤ κ(ψj),where ψj ∈ Dn(ψi),
holds for each ψi, i = 0, ..., d− 2.

Proof. If ψi = P(ψj), then we get directly κ(ψi) ≤ κ(ψj) using Remark 2.3.2 from [3]. Otherwise,
as ψj ∈ D(ψi), there exists a unique sequence ψk1 , ..., ψkl , where 0 ≤ km ≤ d − 2,m = 1, ..., l, l ≤
d − 1, ψk1 = ψi, ψkl = ψj and ψk−1 = P(ψk) for k = 2, ..., l. Applying the above mentioned remark for
each pair (ψk−1, ψk), k = 2, ..., l, we get κ(ψk1) ≤ ... ≤ κ(ψkl). �

Thus, having a branch from t, all its nodes are uniquely ordered according to their value of κ assuming
unequal values of κ for all parent-child pairs. This provides us an alternative algorithm for the HAC
structure determination. We have to assign the generators with the highest values of κ to the lowest
levels of the branches in the structure and ascending to higher levels we assign the generators with lower
values of κ.

To allow for computation of MoC among m (possibly > 2) random variables (r.v.s) we state the
following definition. For simplification, denote the set of pairs of r.v.s as UIJ = {(Ui, Uj)|(i, j) ∈ I × J},
where I, J ⊂ N, I 6= ∅ 6= J.

Definition 8. Let m ∈ N and κ be a MoC. Then define an aggregated MoC κ+ as

κ+(UIJ) =

{
κ(Ui, Uj) if I = {i}, J = {j}
+(κ(Ui, Uj)i∈I,j∈J), else,

(7)



where the non-empty sets I, J ⊂ {1, ...,m}, I ∩ J = ∅ and + denotes an aggregation function3, for which
+(x, ..., x) = x for all x ∈ I.

Remark 3. κ(ψk) = κ+(UUC(Hl(ψk))UC(Hr(ψk))) for a d-HAC C and for each k = 0, ..., d− 2.

Let us illustrate our approach to the structure determination for d = 4. Assume three different
structures t1, t2, t3 corresponding to copulas C1, C2, C3. For t1 let UC1

(ψ2) = UC1
(ψ1) ∪ UC1

(ψ0) =
{3, 4} ∪ {1, 2}. For simplification denote {3, 4} ∪ {1, 2} as ((34)(12)). For t2 let UC2

(ψ2) = {u4} ∪
(UC2(ψ1) ∪ UC2(ψ0)) = {u4} ∪ ({u3} ∪ {u1, u2}) = (4(3(21))). For t3 let UC3(ψ0) = (3(4(12))). We see
that t1 is the structure of a partially-nested 4-HAC and t2, t3 are the structures of fully-nested 4-HACs.
Also assume (without a loss of generality) κ(ψ2) = α, κ(ψ0) = γ and α < κ(ψ1) < γ, α, γ ∈ I for all
t1, t2, t3. The case when α = κ(ψ1) or κ(ψ1) = γ is discussed later for a 3-HAC. Denote β1 = κ(ψ1)
for t1, β2 = κ(ψ1) for t2 and β3 = κ(ψ1) for t3. The quantities α, β1, β2, β3, γ can be determined from
corresponding bivariate distributions as for t1 is α = κ(ψ2) = κ(U3, U1) = κ(U3, U2) = κ(U4, U1) =
κ(U4, U2), β1 = κ(ψ1) = κ(U3, U4), γ = κ(ψ0) = κ(U1, U2). For t2 we have α = κ(ψ2) = κ(U4, U3) =
κ(U4, U1) = κ(U4, U2), β2 = κ(ψ1) = κ(U3, U1) = κ(U3, U2), γ = κ(ψ0) = κ(U1, U2). For t3 similarly α =
κ(ψ2) = κ(U4, U3) = κ(U3, U1) = κ(U3, U2), β3 = κ(ψ1) = κ(U4, U1) = κ(U4, U2), γ = κ(ψ0) = κ(U1, U2).

Now assume a 4-HAC C with unknown structure t ∈ {t1, t2, t3} and (U1, U2, U3, U4) ∼ C. Compute
κ for all pairs of the r.v.s. If follows from the assumptions that κ(U1, U2) = γ is always (for t = t1, t2, t3)
the maximum from those values. To satisfy Proposition 5, it is necessarily UC(ψ0) = {12}, what assures
through Algorithm 1 that ψ0 is assigned to the lowest level of a branch from t. We introduce the a
new variable Z = (U1, U2), which represents r.v.s U1, U2. Once again compute κ for all the pairs of the
new r.v.s, which are now r.v.s (U3, U4, Z). As Z represents two r.v.s we use generalized κ+. Thus we
get β1 = κ+(U3, U4) = κ(U3, U4), β2 = κ+(U3, Z) = κ+(U{3}{12}) and β3 = κ+(U4, Z) = κ+(U{4}{12}).
Consider that under t = t1 is β1 > β2 = β3 = α. Under t = t2 is β2 > β1 = β3 = α and under t = t3
is β3 > β1 = β2 = α. The determination of UC(ψ1) in accordance with Proposition 5 is then obvious -
UC(ψ1) = {3, 4} if β1 = max(β1, β2, β3) or UC(ψ1) = {3, 2, 1} if β2 = max(β1, β2, β3) or UC(ψ1) = {4, 2, 1}
if β3 = max(β1, β2, β3). The set UC(ψ2) = {4, 3, 2, 1} for all t1, t2, t3.

The described process is generalized in Algorithm 2 for arbitrary d > 2. The algorithm returns the
sets UC(zd+k+1) corresponding to the sets UC(ψk), k = 0, ..., d − 2. Passing them to Algorithm 1, we
avoid their computation from Definition 7 and we get the requested d-HAC structure without a need of
knowing the forms of the bivariate margins.

Algorithm 2 The HAC structure determination based on κ

Input:
1) I = {1, ..., d}, 2) (U1, ..., Ud) ∼ C, 3) κ+ ... an aggregated MoC, 4) zk = uk,UC(zk) = {k}, k = 1, ..., d
The structure determination:
for k = 0, ..., d− 2 do

1. (i, j) := argmax
i∗<j∗,i∗∈I,j∗∈I

κ+(UUC(zi∗ )UC(zj∗ ))

2. UC(zd+k+1) := UC(zi) ∪ UC(zj)
3. I := I ∪ {d+ k + 1}\{i, j}

end for
Output:
UC(zd+k+1), k = 0, ..., d− 2

Now consider a fully-nested 3-HAC with two equal generators given by the form C(u1, C(u2, u3;ψ);ψ) =
ψ(ψ−1(u1) + ψ−1(ψ(ψ−1(u2) + ψ−1(u3)))). As it equals to ψ(ψ−1(u1) + ψ−1(u2) + ψ−1(u3)), which is
the 3-AC C(u1, u2, u3;ψ), we get for this copula in Step 1. of the algorithm three pairs (1,2), (1,3), (2,3)
corresponding to the maximal value of κ+. This is because all bivariate margins of C(u1, u2, u3;ψ) are
distributed equally. Choosing the first pair to be the pair (i, j) we get the result of the algorithm as
UC(ψ0) = {1, 2},UC(ψ1) = {1, 2, 3}. Passing it to Algorithm 1 we get the corresponding structure and
denote it as r1. In the same way we obtain for the second and the third pair the structures we denote as
r2, r3. But, as C(u1, C(u2, u3;ψ);ψ) = C(u1, u2, u3;ψ), all those structures r1, r2, r3 corresponds to the
same copula. Thus, in the case that there are more than one pair corresponding to the maximal value
of κ+ in Step 1., we can choose the pair arbitrarily, because it does not affect the resulting copula, i.e.

3like, e.g., max, min or mean



the algorithm return different structures, which however correspond to the same copula. This fact can
be also easily generalized for the case when d > 3.

4 Conclusions

As the aggregated κ+ depends only on the pairwise κ and the aggregation function +, we can easily
derive its empirical version κ+n just by substituting κ in κ+ by its empirical version κn, e.g., by empirical
version of Kendall’s tau. Using κ+n instead of κ+ we can easily derive the empirical version of the structure
determination process represented by Algorithms 1, 2. Conclude that in this way we base the structure
determination only on the values of the pairwise MoC. This is the essential property of our approach,
because if the relationship between κ and θ established through (5) is explicitly known, whole HAC,
including its structure and its parameters, can be estimated just from κn computed on the realizations
of (Ui, Uj), 1 ≤ i < j ≤ d completely avoiding the use of the MLE.
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