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Abstract Copulas are distribution functions with standard uniform univariate7

marginals. Copulas are widely used for studying dependence among continuously8

distributed random variables, with applications in finance and quantitative risk9

management; see, e.g., the pricing of collateralized debt obligations [27]. The ability10

to model complex dependence structures among variables has recently become11

increasingly popular in the realm of statistics, one example being data mining12

(e.g., cluster analysis, evolutionary algorithms or classification).13

The present work considers an estimator for both the structure and the pa-14

rameters of hierarchical Archimedean copulas. Such copulas have recently become15

popular alternatives to the widely used Gaussian copulas. The proposed estimator16

is based on a pairwise inversion of Kendall’s tau estimator recently considered in17

the literature but can be based on other estimators as well, such as likelihood-18

based. A simple algorithm implementing the proposed estimator is provided. Its19

performance is investigated in several experiments including a comparison to other20

available estimators. The results show that the proposed estimator can be a suit-21

able alternative in the terms of goodness-of-fit and computational efficiency. Addi-22

tionally, an application of the estimator to copula-based Bayesian classification is23

presented. A set of new Archimedean and hierarchical Archimedean copula-based24

Bayesian classifiers is compared with other commonly known classifiers in terms25
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work of Martin Holeňa was funded by the Czech Science Foundation (GA ČR) grant 13-17187S.
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of accuracy on several well-known datasets. The results show that the hierarchical26

Archimedean copula-based Bayesian classifiers are, despite their limited applica-27

bility for high-dimensional data due to expensive time consumption, similar to28

highly-accurate classifiers like support vector machines or ensemble methods on29

low-dimensional data in terms of accuracy while keeping the produced models30

rather comprehensible.31

Keywords copula · hierarchical Archimedean copula · copula estimation ·32

structure determination · Kendall’s tau · Bayesian classification33

1 Introduction34

Studying relationships among random variables is a crucial task in the field of35

knowledge discovery and data mining (KDDM). Having a dataset collected, the36

relationships among the observed variables can be studied by means of an appro-37

priate measure of stochastic dependence. Under the assumption that the marginal38

distributions of the variables are continuous, Sklar’s Theorem [51] can be used to39

decompose the joint multivariate distribution in two parts, the univariate marginal40

distributions and the unique dependence structure, i.e., the copula of the joint41

distribution. Thus, studying dependence among continuously distributed random42

variables can be restricted without loss of generality to studying the underlying43

copula.44

Despite the fact that a large part of the success of copulas is attributed to45

finance, copulas are increasingly adopted also in KDDM, where their ability to46

capture complex dependence structures among variables is used. Applications of47

copulas can be found in water-resources and hydro-climatic analysis [13,30,31,35,48

38], gene analysis [37,56], cluster analysis [11,32,46] or in evolutionary algorithms,49

in particular estimation of distribution algorithms [17,54]. For an illustrative ex-50

ample, we refer to [30], which describes an application of copulas to detecting51

weather anomalies in a climate change dataset.52

For certain types of applications, hierarchical Archimedean copulas (HACs) are53

a frequently used alternative to Gaussian copulas due to several desirable proper-54

ties, e.g., HACs are not restricted to radial symmetry; HACs are expressible in a55

closed form; they are able to model asymmetric distributions with tail dependence;56

and HACs are able to model complex relationships while keeping the number of57

parameters comparably small; see [23,27]. The last point is important from a data58

mining point of view because models with a small number of parameters are more59

easily understandable. Denoting the data dimension by d, on the one hand, if us-60

ing Gaussian copulas, the number of parameters grows quadratically in d and the61

obtained models can quickly become challenging from a computational point of62

view. On the other hand, if using Archimedean copulas (ACs), the obtained models63

contain only one parameter (provided an AC is based on a one-parametric gener-64

ator), which is rarely feasible in real-world applications. In this context, HACs are65

often a good trade-off between these two extremes and provide relatively simple66

and flexible dependency models.67

Despite the popularity of HACs, feasible techniques for their parameter and68

structure estimation are addressed only in few papers. Most of them assume a given69

hierarchical structure, which is motivated by applications in economics, e.g., [48,70
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49]. On the contrary, in [50], only structure determination of a HAC is addressed.71

We are aware of only one paper [43] that addresses both structure determination72

and parameter estimation via a multi-stage procedure. That paper mainly focuses73

on the estimation of the parameters using the maximum-likelihood (ML) tech-74

nique and briefly mentions the inversion of Kendall’s tau as an alternative. For75

structure determination, six approaches are presented. Two of them are based on76

the inversion of Kendall’s tau, one on the Chen test statistic [8] and the remaining77

three approaches on the ML technique. All but one approach lead to biased esti-78

mators, which can be seen from the results of the reported study. The unbiased79

estimator, denoted by θRML, which shows the best goodness-of-fit (measured by80

Kullback-Leibler divergence) in the study, is simply the maximum likelihood es-81

timator based on initial values computed from one of the biased estimators. Due82

to this construction, θRML often does not approximate the true parameters well83

when the structure determined by the biased estimator is not the true structure.84

The number of such cases rapidly increases in large dimensions, as we show later85

in Section 4.86

In the present work, we propose a new estimator for both the structure and87

the parameters of HACs. On the one hand, this estimator is also a multi-stage88

procedure where the structure and the parameters are estimated in a bottom-up89

manner. On the other hand, it is based on the fact that a HAC can be uniquely90

recovered from all its bivariate margins and thus allows to estimate the copula91

parameters just from the parameters of the bivariate marginal copulas. Assum-92

ing the true copula is a HAC, our estimator approximates the true copula closer93

(measured by a selected goodness-of-fit statistic) than the previously mentioned94

methods. Moreover, the ratio of structures properly determined using our esti-95

mator is higher compared with the estimators mentioned above. Finally, avoiding96

a time-consuming computation of initial values, we also gain computational ef-97

ficiency. The experiments based on simulated data in Section 4 show that our98

approach outperforms the above-mentioned methods with respect to goodness-of-99

fit, the properly determined structures ratio and also the consumed run-time.100

In addition, we consider Bayesian classifiers that are based on Gaussian cop-101

ulas, ACs and HACs. When fitting those classifiers, efficient estimation methods102

for a given copula class are needed. In the Gaussian and Archimedean case, such103

estimation methods are known, whereas for HACs, we can now apply our proposed104

estimator. We compare it with other copula-based Bayesian classifiers, as well as105

with other types of commonly used classifiers.106

The paper is structured as follows. The following section summarizes some107

needed theoretical concepts concerning ACs and HACs. Section 3 presents the new108

estimation approach for HACs, and Section 4 describes the experiments based on109

simulated data. Section 5 presents a copula-based approach to Bayesian classi-110

fication and includes an experimental comparison of several classifiers based on111

real-world datasets. Section 6 concludes this paper.112
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2 Preliminaries113

2.1 Copulas114

Definition 1 For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is a d-115

variate distribution function on Id (I = [0, 1]), whose univariate margins are uni-116

formly distributed on I.117

Copulas establish a connection between joint distribution functions (d.f.s) and118

their univariate margins, which is well-know due to Sklar’s Theorem.119

Theorem 1 (Sklar’s Theorem (1959)) [51] Let H be a d-variate d.f. with univariate120

margins F1, ..., Fd. Let Aj denote the range of Fj , Aj := Fj(R), j = 1, ..., d,R :=121

R ∪ {−∞,+∞}. Then there exists a copula C such for all (x1, ..., xd) ∈ Rd,122

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (1)

Such a C is uniquely determined on A1×...×Ad. Conversely, if F1, ..., Fd are univariate123

d.f.s, and if C is any d-copula, then the function H : Rd → I defined by (1) is a d-124

dimensional distribution function with margins F1, ..., Fd.125

Through Sklar’s Theorem, one can derive for any d-variate d.f. with con-126

tinuous margins its unique copula C using (1). C is given by C(u1, ..., ud) =127

H(F−1 (u1), ..., F−d (ud)), where F−i , i ∈ {1, ..., d}, denotes the pseudo-inverse of Fi128

given by F−i (s) = inf{t | Fi(t) ≥ s}, s ∈ I. Implicit copulas are derived in this129

way from popular joint d.f.s, e.g., the popular class of Gaussian copulas is derived130

from multivariate normal distributions. However, using this process often results131

in copulas which do not have a closed form, which can be a drawback for cer-132

tain applications, e.g., if explicit probabilities and thus copula values have to be133

computed.134

2.2 Archimedean Copulas135

Due to their explicit construction, Archimedean copulas (ACs) are typically ex-136

pressible in closed form. To construct ACs in arbitrary dimensions, we need the137

notion of an Archimedean generator and of complete monotonicity.138

Definition 2 An Archimedean generator (shortly, generator) is a continuous, non-139

increasing function ψ : [0,∞] → [0, 1], which satisfies ψ(0) = 1, ψ(∞) = limt→∞140

ψ(t) = 0 and which is strictly decreasing on [0, inf{t | ψ(t) = 0}]. We denote the141

set of all generators by Ψ . If ψ satisfies (−1)kf (k)(t) ≥ 0, for all k ∈ N, t ∈ [0,∞),142

ψ is called completely monotone. We denote the set of all completely monotone143

generators by Ψ∞.144

Definition 3 Any d-copula C is called an Archimedean copula (we denote it d-AC)145

based on a generator ψ ∈ Ψ , if it admits the form146

C(u) := C(u;ψ) := ψ(ψ−1(u1) + ...+ ψ−1(ud)),u ∈ Id, (2)

where ψ−1 : [0, 1]→ [0,∞] is defined by ψ−1(s) = inf{t | ψ(t) = s}, s ∈ I.147

A condition sufficient for C to be indeed a proper copula is ψ ∈ Ψ∞; see [40].148
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Table 1 Completely monotone (c.m.) one-parametric Archimedean families from [42, p. 116]
considered in this paper. The table contains the corresponding families, the parameter ranges
and the sufficient nesting condition for two generators from the same family (see Section 2.3
in [23]). The sufficient nesting condition involves generators ψ1 and ψ2 from the same family
with parameters equal to θ1 and θ2, respectively.

Family θ ψ(t) (ψ−1
1 ◦ ψ2)′(t) c.m.

Clayton (C) (0,∞) (1 + t)−1/θ θ1 ≤ θ2
Frank (F) (0,∞) − log(1− (1− e−θ) exp(−t))/θ θ1 ≤ θ2
Gumbel (G) [1,∞) exp(−t1/θ) θ1 ≤ θ2

As we can see from Definition 3, if a random vector U is distributed according149

to some AC, all its k-dimensional marginal copulas are equal. Thus, e.g., the150

dependence among all pairs of components is identical. This symmetry of ACs is151

often considered to be a rather strong restriction, especially in high dimensions;152

see [26] for a discussion and possible applications.153

To obtain an explicit form of an AC, we need ψ and ψ−1 to be explicit; many154

such generators can be found, e.g., in [42]. In this paper, we use the three well-155

known parametric generators of the Clayton, Frank and Gumbel families; see Table156

1. We selected these three families of generators because of two reasons. The first157

reason relates to flexibility of these families to model tail dependence in pairs of158

random variables, as this is a copula property. The Clayton family allows lower tail159

dependence in a pair (being upper tail independent), the Gumbel family allows160

oppositely upper tail dependence in a pair (being lower tail independent), and161

models from the Frank family are both lower and upper independent, similarly to162

Gaussian copulas; see [22, p. 43]. The second reason is that this choice allows for163

a comparison of our results with the results in [43] and [28]. More precisely, in164

[43], HAC estimation experiments involving HACs based on Clayton and Gumbel165

generators are reported; these experiments relate to our experiments described166

in Section 4. In [28], a visual representation of a HAC structure involving Frank167

generators obtained from the Iris dataset is presented; this tree-like representation168

relates to our dendrogram-like representation described in Section 5.169

2.3 Hierarchical Archimedean Copulas170

To allow for asymmetries, one may consider the class of HACs (also called nested171

Archimedean copulas), recursively defined as follows.172

Definition 4 [23] A d-dimensional copula C is called a hierarchical Archimedean173

copula if it is either an AC, or if it is obtained from an AC through replacing some174

of its arguments with other hierarchical Archimedean copulas. In particular, if C175

is given recursively by (2) for d = 2 and176

C(u;ψ1, ..., ψd−1) = ψ1(ψ−1
1 (u1) + ψ−1

1 (C(u2, ..., ud;ψ2, ..., ψd−1))),u ∈ Id, (3)

for d ≥ 3, C is called fully-nested hierarchical Archimedean copula (FHAC)1 with177

d−1 nesting levels. Otherwise, C is a partially-nested hierarchical Archimedean copula178

(PHAC)2.179

1 also called fully-nested Archimedean copula
2 also called partially-nested Archimedean copula
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u1 u2 u3

C(·;ψ2)

C(·;ψ1)

Fig. 1 Tree-like structure of a 3-FNAC.

Remark 1 We denote a d-dimensional HAC as d-HAC, and analogously d-FHAC180

and d-PHAC.181

From the definition, we can see that ACs are special cases of HACs. The most182

simple proper 3-HAC is a two-level FHAC given by183

C(u;ψ1, ψ2) = C(u1, C(u2, u3;ψ2);ψ1)

= ψ1(ψ−1
1 (u1) + ψ−1

1 (ψ2(ψ−1
2 (u2) + ψ−1

2 (u3)))), u ∈ I3. (4)

and its structure can be represented via a tree-like graph; see Figure 1.184

Assume that a random vector (U1, U2, U3) is distributed according to the 3-185

FHAC given by (4), i.e., (U1, U2, U3) ∼ C(u;ψ1, ψ2). Then C(u1, u2, 1;ψ1, ψ2) =186

C(u1, u2;ψ1), C(u1, 1, u3;ψ1, ψ2) = C(u1, u3;ψ1) and C(1, u2, u3;ψ1, ψ2) = C(u2, u3;ψ2)187

for all u1, u2, u3 ∈ I. This means that this 3-FHAC involves two different bivariate188

marginal copulas, the 2-AC based on ψ1, which is the distribution of the pairs189

(U1, U2) and (U1, U3), and the 2-AC based on ψ2, which is the distribution of the190

pair (U2, U3). The asymmetry of this 3-HAC is a motivating example for nesting191

of ACs. The theoretical soundness of nesting is addressed in Theorem 2.192

As in the case of ACs, we can ask for sufficient conditions for the function C193

given by (3) to be a proper copula. An answer to this question is provided by194

the following theorem. Note that another important result concerning stochastic195

representation of HACs is provided by Theorem 3.2 in [24].196

Theorem 2 (McNeil (2008)) [39] If ψj ∈ Ψ∞, j ∈ {1, ..., d−1} such that ψ−1
k ◦ψk+1197

have completely monotone derivatives for all k ∈ {1, ..., d−2}, then C(u;ψ1, ..., ψd−1),198

u ∈ Id, given by (3) is a copula.199

Theorem 2 is stated only for fully-nested HACs, but it can be easily trans-200

lated to partially-nested HACs. The condition for (ψ−1
k ◦ ψk+1)′ to be completely201

monotone is often called a sufficient nesting condition.202

Any d-HAC structure can be expressed as a tree with k ≤ d− 1 non-leaf nodes203

(shortly, nodes), which correspond to the generators ψ1, ..., ψk, and d leaves, which204

correspond to the variables u1, ..., ud. If the structure corresponds to a binary tree,205

then k = d − 1, otherwise k < d − 1. For the sake of simplicity, we assume only206

binary-structured HACs in the following. A binary-structured HAC is a HAC with207

the structure which corresponds to a binary tree and for each parent-child pair of208

generators (ψi, ψj) in the structure holds that ψi 6= ψj .209
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u1 u2

z12

u3 u4 u5

z45

z3(45)

z(12)(3(45))

u1 u2 u3

z23

u4 u5

z45

z(23)(45)

z1((23)(45))

Fig. 2 Two 5-PHAC structures denoted by ((12)(3(45))) and (1((23)(45))) are depicted on
the left and on the right side, respectively.

Similar to any 2-AC being determined by its corresponding generator, we iden-210

tify each node in a HAC structure with one generator. Thus we always have the211

nodes ψ1, ..., ψd−1. For a node ψ, denote by D(ψ) the set of all descendant non-leaf212

nodes of ψ, Dl the set of all descendant leaves of ψ, A(ψ) the set of all ancestor213

nodes of ψ, Hl(ψ) the left child of ψ and Hr(ψ) the right child of ψ. Next, let z be214

a non-leaf node or a leaf, and, assuming z is not the root of the structure, denote215

by P(z) the parent node of z.216

For simplicity, a d-HAC structure s is denoted by a sequence of reordered in-217

dices {1, ..., d} using parentheses to mark the variables with the same parent node.218

For example, the structure of the copula given by (4) is denoted as (1(23)). The219

inner pair of parentheses corresponds to the variables u2, u3, for which P(u2) =220

P(u3) = ψ2. As u2, u3 are connected through their parent, we can introduce a221

new variable denoted by z23, which represents the variables u2, u3 and is de-222

fined by z23 = C(u2, u3;ψ2). Then (4) translates to ψ1(ψ−1
1 (u1) + ψ−1

1 (z23)) =223

C(u1, z23;ψ1), and thus the outer pair of parenthesis in the notation of the struc-224

ture corresponds to the variables u1, z23, for which P(u1) = P(z23) = ψ1. The225

structure of the 4-FHAC according to Definition 4 is therefore s = (1(2(34))), for226

the 5-FHAC, s = (1(2(3(45)))), etc. Analogously, for PHACs, s = ((12)(3(45)))227

and s = (1((23)(45))) denote the structures depicted on the left-hand and on the228

right-hand side in Figure 2, respectively.229

When using HACs in applications, there exist many possible structures, for230

example for d = 10, more than 280 millions structures exist (including also non-231

binary ones) and each 10-HAC can incorporate up to 9 parameters (using only232

one-parametric generators, possibly from different families). On the one hand,233

choosing the model (structure and parameters) that fits the data best is a much234

more complex relative to the case when using ACs which have just one structure.235

On the other hand, this complexity is compensated by a substantially higher flex-236

ibility of obtained models. Due to the asymmetry in HAC-based models (different237

dependencies in pairs of variables are allowed), these models fit most data better238

than AC models, which is illustrated by the experimental results presented below239

in Section 5. There, different copula-based Bayesian classifiers are evaluated in240

terms of accuracy and, due to the flexibility of HAC models, the Bayesian clas-241

sifiers based on HACs mostly score higher than the Bayesian classifiers based on242

ACs .243
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To derive an explicit parametric form a d-HAC C, we need explicit parametric
forms for the generators ψ1, ..., ψd−1, which involve the parameters θ1, ..., θd−1,
respectively, and its structure s. Due to this, the copula C is also denoted by
Cψ,θ;s(u1, ..., ud) in what follows. For example, the 3-HAC given by (4) can be
denoted by Cψ1,ψ2,θ1,θ2;(1(23)) and its parametric form, assuming, e.g., both of its
generators ψ1, ψ2 to be Clayton generators, is given by

Cψ1,ψ2,θ1,θ2;(1(23))(u1, u2, u3) =

(((
u2
−θ2 + u3

−θ2 − 1
)− 1

θ2

)−θ1
+ u1

−θ1 − 1

)− 1
θ1

.

(5)

2.4 Kendall’s tau and an extension to more than two dimensions244

Let (X1, Y1) and (X2, Y2) be independent copies of a random vector (X,Y ). Then
the population version of Kendall’s tau is defined as the probability of concordance
minus the probability of discordance, i.e.,

τ = τXY = P((X1 −X2)(Y1 − Y2) > 0)− P((X1 −X2)(Y1 − Y2) < 0). (6)

It can be shown, see, e.g., [13], that245

τ(C) = 4

∫
I2
C(u1, u2)dC(u1, u2)− 1, (7)

so τ depends only on the copula of (X,Y ). If C is a 2-AC based on a twice246

continuously differentiable generator ψ with ψ(t) > 0 for all t ∈ [0,∞), Kendall’s247

tau can be represented as [29, p. 91], [42, p. 163]248

τ(ψ) = τ(C(·;ψ)) = 1− 4

∫ ∞
0

t(ψ′(t))2dt = 1− 4

∫ 1

0

ψ−1(t)

(ψ−1)′(t)
dt. (8)

Hence, (8) states a relationship between θ and τ , which can often be expressed in249

closed form. For example, if C is a Clayton copula, see Table 1, we get τ = θ/(θ+2)250

(the relationship between θ and τ for other generators can be found, e.g., in [22]).251

The inversion of this relationship establishes a method-of-moments-like estimator252

of the parameter θ given by θ̂n = τ−1(τn), based on the empirical version τn of τ ,253

given by254

τn =
4

n(n− 1)

(
n∑

i=1,j=1

1{(ui1−uj1)(ui2−uj2)>0}

)
− 1, (9)

where (u•1, u•2) denotes a realization of n independent and identically distributed255

(i.i.d) copies of (U1, U2) ∼ C; see [16]. Since we do not observe realizations from256

C directly, note that τ can be computed based on the realizations of (X,Y ). If257

τ(θ̂n) = τn has no solution, this estimation method does not lead to an estimator.258

Unless there is an explicit form for τ−1, θ̂n is computed by numerical root finding259

[26].260

This estimation method can also be generalized to ACs when d > 2, see [4,
26,34,49]. One of the methods proposed in [4,49] uses a sample version of the



An HACs estimation approach 9

Kendall correlation matrix. Denote by (τij) = (τXi,Xj )ij the population version of
the Kendall correlation matrix for continuous random variables X1, ..., Xd. Note
that (τXi,Xj )ij = (τUi,Uj )ij , where F1(X1) = U1, ..., Fd(Xd) = Ud. Similarly, denote
the sample version of Kendall correlation matrix by (τnij), where τnij denotes the
sample version of Kendall’s tau between the i-th and j-th data column. Then θ is
estimated by

θ̂n = τ−1

((
d

2

)−1 ∑
1≤i≤j≤d

τnij

)
. (10)

As can be seen, the parameter is chosen such that the value of Kendall’s tau equals261

the average over all pairwise sample versions of Kendall’s tau. Properties of this262

estimator are not known and also not easy to derive since the average is taken over263

dependent data columns [33]. However, simulations conducted in [26] suggest con-264

sistency of this estimator. Moreover, (d2)
−1∑

1≤i≤j≤d τ
n
ij is an unbiased estimator265

of τ(θ). This is an important property and we transfer it later to an estimator that266

we use for the structure determination which we base on appropriately selected267

pairwise sample versions of Kendall’s tau.268

For applying this generalized estimation approach to HACs, we define a gener-269

alization of τ for m (possibly > 2) random variables (r.v.s) based on the following270

notation. Let I, J ⊂ {1, ..., d}, I 6= ∅, J 6= ∅, (U1, ..., Ud) ∼ C and C be a d-HAC.271

Denote a set of pairs of r.v.s by UIJ = {(Ui, Uj)|(i, j) ∈ I×J} and a set of pairs of272

data columns by uIJ = {(u•i, u•j)|(i, j) ∈ I×J}, where u•i, u•jdenotes realizations273

of (Ui, Uj).274

Definition 5 Any function g : Ik → I, k ∈ N, satisfying 1) g(u, ..., u) = u for all275

u ∈ I and 2) g(up1 , ..., upk) = g(u1, ..., uk) for all u1, ..., uk ∈ I and all permutations276

(p1, ..., pk) of (1, ..., k) is called an I-aggregation function.277

Examples of I-aggregation functions are the functions max, min or mean restricted278

to Ik.279

Definition 6 Let g be an I-aggregation function. Then define a g-aggregated Kendall’s

tau (or simply an aggregated Kendall’s tau) τg as

τg(UIJ ) =

{
τ(Ui, Uj), if I = {i}, J = {j},
g(τ(Ui1 , Uj1), τ(Ui1 , Uj2), ..., τ(Uil , Ujq )), otherwise,

(11)

where I = {i1, ..., il}, J = {j1, ..., jq} are non-empty disjoint subsets of {1, ..., d}.280

281

Note that the sets I and J are assumed to be disjoint because we are interested282

only in the values of Kendall’s tau for bivariate margins of a HAC. For example,283

if I = {1, 2} and J = {2, 3}, then τg(UIJ ) would involve τ(U2, U2), which is not284

related to any bivariate margin of a HAC.285

As the aggregated τg depends only on the pairwise τ and the aggregation286

function g, we can easily derive its empirical version τgn by substituting τ in τg by287

its empirical version τn given by (9). Analogously to the case of ACs, the parameter288

can then be estimated as θ̂n = τ−1(τgn). This is further explained in Remark 3 of289

Section 3.1.290
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2.5 Goodness-of-fit tests291

Assume i.i.d. random vectors Xi = (Xi1, ..., Xid), i ∈ {1, ..., n}, distributed accord-292

ing to a joint distribution functionH with continuous margins Fj , j ∈ {1, ..., d}, and293

the binary-structured HAC C generated by one-parametric generators ψ1, ..., ψd−1.294

All generators ψ1, ..., ψd−1 are assumed to belong to a one-parametric family of295

generators (e.g., to one of the families listed in Table 1) and their parameters are296

denoted by θ1, ..., θd−1.297

Once we have the parameters estimated, we can ask how well our fitted model298

fits the data. This can be done using methods known as goodness-of-fit tests (GoF299

tests). In the following, we recall three GoF tests based on statistics that are300

analogues to Cramér-von Mises statistics [10]. A large value of such statistics leads301

to the rejection of H0 : C ∈ C0, where C0 = {Cθ : θ ∈ O} and O is an open subset302

of Rp, p ≥ 1. Thus for measuring the fitting quality of copula models, we can,303

informally, assess copula models with lower value of such statistics as “better”.304

Now consider that, if the margins Fj , j ∈ {1, ..., d}, are known, Uij = Fj(Xij), i ∈
{1, ..., n}, j ∈ {1, ..., d}, is a random sample from C. In practice, the margins are
typically unknown and must be estimated parametrically or non-parametrically.
In the following, we will work under unknown margins and thus we consider the
pseudo-observations

Uij =
n

n+ 1
F̂n,j(Xij) =

Rij
n+ 1

(12)

where F̂n,j denotes the empirical distribution function corresponding to the jth mar-305

gin and Rij denotes the rank of Xij among X1j , ..., Xnj . The information contained306

in pseudo-observations is conveniently summarized by the associated empirical dis-307

tribution given by308

Cn(u) =
1

n

n∑
i=1

1{Ui1≤u1,...,Uid≤ud}, (13)

where u = (u1, ..., ud) ∈ Id. This distribution is usually called “empirical copula”,309

though it is not a copula except asymptotically [15].310

The first GoF test is based on the empirical process

Cn =
√
n(Cn − Cθn), (14)

and uses a rank-based version of the Cramér-von Mises statistics311

Sn =

∫
Id
Cn(u)2dCn(u) =

n∑
i=1

(Cn(ui)− Cθn(ui))
2. (15)

Large values of this statistic lead to the rejection of H0 : C ∈ C0. It is shown in312

[14] that the test is consistent, i.e., if C /∈ C0, then H0 is rejected with probability313

approaching 1 as n → ∞. Appropriate p-values can be obtained via specially314

adapted Monte Carlo methods described in [15].315

The second GoF test, proposed in [13], uses a probability integral transforma-316

tion of the data, the so-called Kendall’s transform317

X 7→ V = H(X) = C(U1, ..., Ud), (16)
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where (U1, ..., Ud) ∼ C; see [15]. Let K denote the univariate d.f. of V and U1, ...,Un318

the pseudo-observations Ui = ( Ri1n+1 , ...,
Rid
n+1 ), i ∈ {1, .., n}. Then K can be esti-319

mated nonparametrically by the empirical distribution function of a rescaled ver-320

sion of the pseudo-observations V1 = Cn(U1), ..., Vn = Cn(Un) given by321

Kn(v) =
1

n

n∑
i=1

1{Vi≤v}, v ∈ I, (17)

which is a consistent estimator of the underlying distribution K. Under H0, U =322

(U1, ..., Ud) is distributed as Cθ for some θ ∈ O and hence Cθ(U) ∼ Kθ. One can323

then test324

H ′0 : K ∈ K0 = {Kθ : θ ∈ O} (18)

based on Kn =
√
n(Kn − Kθn), where Kθn denotes the distribution function of325

Cθn(U). Generally, because H0 ⊂ H ′0 the nonrejection of H ′0 does not entail the326

nonrejection of H0 and consequently, the consistency of the above tests using (14)327

does not imply the consistency of the tests using Kn =
√
n(Kn − Kθn). But, in328

the case of bivariate ACs, H ′0 and H0 are equivalent; see [15]. As we are mainly329

interested in 2-ACs as building blocks of HACs, this test is thus convenient for our330

purposes. The specific statistic considered in [13] is a rank-based analogue of the331

Cramér-von Mises statistic332

S
(K)
n =

∫
I
Kn(v)2dKθn . (19)

This statistic can be easily computed as follows [13]:333

S
(K)
n =

n

3
+ n

n−1∑
j=1

K2
n

(
j

n

){
Kθn

(
j + 1

n

)
−Kθn

(
j

n

)}

− n
n−1∑
j=1

Kn

(
j

n

){
K2
θn

(
j + 1

n

)
−K2

θn

(
j

n

)}
. (20)

The third GoF test (proposed in [15]) is based on another probability integral334

transform - namely on the Rosenblatt’s transform, which is a mapping Rθ : (0, 1)d →335

(0, 1)d such that e1 = u1 and for each j = 2, ..., d,336

ej =
∂j−1Cθ(u1, ..., uj , 1, ..., 1)

∂u1...uj−1

/
∂j−1Cθ(u1, ..., uj−1, 1, ..., 1)

∂u1...uj−1
. (21)

A crucial property of Rosenblatt’s transform is that U ∼ Cθ if and only if the337

distribution of Rθ(Cθ) is the d-variate independence copula CΠ(u) = u1u2...ud; see,338

e.g., [15]. Thus for all θ ∈ O, H0 : Cθ ∈ C0 is equivalent to H ′′0 : Rθ(U) ∼ CΠ .339

To test H ′′0 , we can therefore use the fact that under H0, the transformed340

pseudo-observations E1 = Rθ(U1), ...,En = Rθ(Un), can be interpreted as a sam-341

ple from the independence copula CΠ . Defining the empirical distribution function342

on E1, ...,En as343

Dn(u) =
1

n

n∑
i=1

1{Ei≤u}, u ∈ Id, (22)
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it should be close to CΠ under H0. Cramér-von Mises statistics based on Rosen-344

blatt’s transformation are given by345

S
(C)
n = n

∫
Id

(Dn(u)− CΠ(u))2dDn(u) =
n∑
i=1

{Dn(Ei)− CΠ(Ei)}2; (23)

see [15]. All three test statistics performed well in a large scale simulation study346

conducted at [15] in the bivariate case. We choose them as good candidates for347

our purpose of goodness-of-fit testing.348

We now introduce a g-aggregated statistic that will be used for the GoF assess-349

ment of d-HAC estimates in Section 4.350

Definition 7 Let C be a d-HAC, g be an I-aggregation function and 2Sn((u•i, u•j), C2(·;ψ))

be the statistic corresponding to a GoF test, e.g., Sn, S
(K)
n or S

(C)
n , for a bivariate

copula C2(u1, u2;ψ) and a pair of data columns (u•i, u•j). A g-aggregated statistics

2S
g
n is

2S
g
n

(
u•1, ..., u•d, C) = g

(
2Sn((u•1, u•2), C12), 2Sn((u•1, u•3), C13), ...,

2Sn((u•1, u•d), C1d), 2Sn((u•2, u•3), C23), ...,

2Sn((u•2, u•d), C2d), ..., 2Sn((u•d−1, u•d), C(d−1)d)
)
,

(24)

where Cij , 1 ≤ i < j ≤ d, are the bivariate marginal copulas of C.351

352

We employ g-aggregated statistics in order to simplify the computation of353

S
(K)
n and S

(C)
n for d > 2. Considering the S

(K)
n statistic, the main difficulty in its354

computation consists in expressing Kθn . For d = 2, given a 2-AC C(·;ψθn), where355

ψθn denotes a generator with a parameter θn, Kθn is the bivariate probability356

integral transform, which can be easily computed as Kθn(t) = t−
ψ−1
θn

(t)

(ψ−1
θn

)′(t)
; see [16].357

However, for d > 2 and particularly for HACs, the complexity of Kθn dramatically358

increases. In [44], its computation is addressed for HACs, however, the authors359

restrict only to FNACs, which rarely occurs in our experiments, and, even for360

FHACs the obtained formulas involve multivariate integration that substantially361

increases the complexity of their application.362

Considering the statistic S
(C)
n , the main difficulty in its computation consists363

in expressing ej , for j = 2, ..., d, given by (21). Observe that ed includes d−1 partial364

derivatives of Cθ, thus its complexity quickly grows in d and the time consumption365

of its computation exceeds reasonable limits already for d = 6, particularly for fam-366

ilies with a more complex generator, e.g., for the Frank family. Using g-aggregated367

statistics, computations for d > 2 are substantially simplified.368

2.6 Okhrin’s algorithm for the structure determination of HAC369

We recall the algorithm presented in [44] for the structure determination of HACs,370

which returns the structure for some unknown HAC C using only the known forms371

of its bivariate margins. The algorithm uses the following definition.372
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Definition 8 Let C be a d-HAC with generators ψ1, ..., ψd−1 and (U1, ..., Ud) ∼ C.373

Define UC(ψk) =
{
i ∈ {1, ..., d} | there exists j ∈ {i+ 1, ..., d} such that (Ui, Uj) ∼374

C(·;ψk)
}

, k = 1, ..., d− 1.375

376

Note that (Uj , Ui) ∼ C(·;ψk) if and only if (Ui, Uj) ∼ C(·;ψk).377

Proposition 1 [19] Defining UC(ui) = {i} for the leaf ui, 1 ≤ i ≤ d, there is a378

unique disjoint decomposition of UC(ψk) given by379

UC(ψk) = UC(Hl(ψk)) ∪ UC(Hr(ψk)). (25)

380

For an unknown d-HAC C with all bivariate margins known, its structure can381

be easily determined using Algorithm 1. We start from the sets UC(u1), ...,UC(ud)382

joining them together through (25) until we reach the node ψ for which UC(ψ) =383

{1, ..., d}.384

Algorithm 1 HAC structure determination [19]

Input:
1) UC(ψ1), ...,UC(ψd−1),
2) I = {1, ..., d− 1}

while I 6= ∅ do
1. k = argmini∈I(#UC(ψi)), if there are more minima, then choose one of them.
2. Find the nodes ψl, ψr, for which UC(ψk) = UC(ψl) ∪ UC(ψr).
3. Hl(ψk) := ψl,Hr(ψk) := ψr.
4. Set I := I\{k}.

end while

Output:
The structure stored in Hl(ψk),Hr(ψk), k = 1, ..., d− 1

2.7 Example385

We illustrate Algorithm 1 for a 5-HAC given by C(C(u1, u2;ψ2), C(u3, C(u4, u5;ψ4);386

ψ3);ψ1) = Cψ1,...,ψ4;((12)(3(45)))(u1, ..., u5). The structure of this copula is depicted387

on the left side in Figure 2 and its bivariate margins are:388

389

(U1, U2) ∼ C(·;ψ2), (U1, U3) ∼ C(·;ψ1), (U1, U4) ∼ C(·;ψ1),
(U1, U5) ∼ C(·;ψ1), (U2, U3) ∼ C(·;ψ1), (U2, U4) ∼ C(·;ψ1),
(U2, U5) ∼ C(·;ψ1), (U3, U4) ∼ C(·;ψ3), (U3, U5) ∼ C(·;ψ3),
(U4, U5) ∼ C(·;ψ4).

390

391

Now assume that the structure is unknown and only the bivariate margins are392

known. We see that UC(ψ1) = {1, 2, 3, 4, 5}, UC(ψ2) = {1, 2}, UC(ψ3) = {3, 4, 5},UC393

(ψ4) = {4, 5}. For the leaves u1, ..., u5, we have UC(ui) = {i}, i = 1, ..., 5. In Step 1 of394

Algorithm 1, there are two minima: k = 2 and k = 4. We arbitrarily choose k = 4.395

As UC(ψ4) = UC(u4) ∪ UC(u5), we set Hl(ψ4) := u4 and Hr(ψ4) := u5 in Step 3.396

In Step 4, we set I = {1, 2, 3, 5}. In the second loop, k = 2. As UC(ψ2) = UC(u1)∪397
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UC(u2), we set Hl(ψ2) := u1 and Hr(ψ2) := u2 in Step 3. In the third loop, we398

have k = 3. As UC(ψ3) = UC(u3)∪UC(ψ4), we set Hl(ψ3) := u3 and Hr(ψ3) := ψ4399

in Step 3. In the last loop, we have k = 1. As UC(ψ1) = UC(ψ2) ∪ UC(ψ3), we set400

Hl(ψ1) := ψ2 and Hr(ψ1) := ψ3 in Step 3. Observing the original copula form and401

Figure 2, we see that we have determined the correct structure, which is stored in402

Hl(ψk),Hr(ψk), k = 1, ..., 4.403

3 Our Approach404

3.1 HAC structure determination based on Kendall’s tau405

According to Theorem 2, our goal is to build the HAC such that the sufficient406

nesting condition is satisfied for each generator and its parent in a HAC structure.407

The sufficient nesting condition typically results in constraints on the parameters408

θ1, θ2 of the involved generators ψ1, ψ2; see, e.g., Table 1 or [23]. As θi, i = 1, 2 is409

related to τ through (8), there is also an important relationship between the values410

of τ and the HAC tree structure following from the sufficient nesting condition.411

This relationship is described for the fully-nested 3-HAC (4) in Remark 2.3.2412

in [22]. There, it is shown that if the sufficient nesting condition holds for the413

parent-child pair (ψ1, ψ2), then 0 ≤ τ(ψ1) ≤ τ(ψ2). We generalize this statement414

as follows.415

Proposition 2 Let C be a d-HAC with the structure s and the generators ψ1, ..., ψd−1,416

where each parent-child pair satisfies the sufficient nesting condition. Then τ(ψi) ≤417

τ(ψj),where ψj ∈ D(ψi), holds for each ψi, i = 1, ..., d− 1.418

Proof As ψj ∈ D(ψi), there exists a unique sequence ψk1 , ..., ψkl , where 1 ≤ km ≤
d− 1, m = 1, ..., l, l ≤ d− 1, ψk1 = ψi, ψkl = ψj and ψk−1 = P(ψk) for k = 2, ..., l.
Applying the above mentioned remark for each pair (ψk−1, ψk), k = 2, ..., l, we
get τ(ψk1) ≤ ... ≤ τ(ψkl). ut

Thus, having a branch from s, all its nodes are uniquely ordered according419

to their value of τ assuming unequal values of τ for all parent-child pairs. This420

provides an alternative algorithm for determining the structure of a HAC. We421

assign generators with the highest values of τ to the lowest levels of the branches422

in the structure. Ascending higher up in the tree we assign generators with lower423

values of τ . Now consider the following definition and proposition.424

Definition 9 Let C be a d-HAC and ui, uj are two different leaves from the struc-425

ture of the d-HAC. Then we call youngest common ancestor of ui, uj (denoted426

Ay(ui, uj)) the node ψ, for which (ψ ∈ A(ui)∩A(uj))∧(A(ui)∩A(uj)∩D(ψ) = ∅).427

Remark 2 Let ψ be a generator from a d-HAC structure, ui ∈ Dl(Hl(ψ)) and428

uj ∈ Dl(Hr(ψ)). Then Ay(ui, uj) = ψ.429

430

Note that due to clear correspondence of the variables in a d-HAC and the431

leaves in the structure of the same d-HAC, both the variables and the leaves are432

denoted by the same u1, . . . , ud. This can be made without a worry to confuse the433

reader.434
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Proposition 3 Let C be a d-HAC with the structure s with generators ψ1, ..., ψd−1.

Then

C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1) = C(ui, uj ;Ay(ui, uj)), 1 ≤ i < j ≤ d. (26)

435

Proof The proof is leaded by induction. Let d = 2. Then C(u1, u2) = C(u1, u2;ψ1),436

i.e., the leaves u1 and u2 are the children of ψ1. It implies that (ψ1 ∈ A(u1) ∩437

A(u2)) ∧ (A(u1) ∩ A(u2) ∩ D(ψ1) = ∅) and thus ψ1 = Ay(u1, u2) according to438

Definition 9.439

Assume d ≥ 3 and that (26) holds for d − 1, d − 2, ..., 3. Start denoting the440

root node of s as ψm. The bivariate marginal copula of C corresponding to vari-441

ables ui, uj is C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1;ψ1, ..., ψd−1). To simplify notation, we442

show in each involved inner HAC only the generator corresponding to the highest443

node in its structure. Thus, for the bivariate marginal copula, we simplify its no-444

tation to C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψm, ...). Note that C(1, ..., 1) = 1 and445

C(1, ..., 1, u, 1, ..., 1) = u, u ∈ I for an arbitrary copula C.446

If Hl(ψm) = uk, k = 1, ..., d, we just formally define ψl = uk and C(·;ψl) = uk.447

If Hr(ψm) = uk, k = 1, ..., d, we also just formally define ψr = uk and C(·;ψr) = uk.448

Although neither C(·;ψl) nor C(·;ψr) are copulas, this will simplify the notation449

used in the proof. In other case, we set ψl = Hl(ψm), ψr = Hr(ψm). Now, we450

distinguish the three following situations:451

1. If ui ∈ Dl(ψl) and uj ∈ Dl(ψr), then C(C(1, ..., 1, ui, 1, ..., 1; ..., ψl, ...), C(1, ..., 1,452

uj , 1, ..., 1; ..., ψr, ...);ψm) = C(ui, uj ;ψm). As ψm = Ay(ui, uj) (Remark 2), the453

statement holds.454

2. If {ui, uj} ⊂ Dl(ψl), then C(C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψl, ...), C(1, ...,455

1; ..., ψr, ...);ψm) = C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψl, ...). Since the tree rooted456

in ψl has less leaves than the tree rooted in ψm, for C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1;457

..., ψl, ...) we already know that (26) holds, thus it holds also for C(1, ..., 1, ui, 1, ...,458

1, uj , 1, ..., 1; ..., ψm, ...).459

3. If {ui, uj} ⊂ Dl(ψr), then C(C(1, ..., 1; ..., ψl, ...), C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ...,460

ψr, ...);ψm) = C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1 ; ..., ψr, ...). Since the tree rooted in461

ψr has less leaves than the tree rooted in ψm, for C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1;462

..., ψr, ...) we already know that (26) holds, thus it holds also for C(1, ..., 1, ui, 1,463

..., 1, uj , 1, ..., 1; ..., ψm, ...). ut464

Thus (Ui, Uj) is distributed according to the 2-AC C(·;Ay(ui, uj)) for all i, j ∈465

{1, ..., d}, i 6= j. This fact allows to prove the following proposition.466

Proposition 4 Let C be a d-HAC with the generators ψ1, ..., ψd−1, (U1, ..., Ud) ∼ C

and (τij) be the population version of the Kendall correlation matrix of (U1, ..., Ud).

Then, given k ∈ {1, ..., d− 1},

τ(ψk) = τij (27)

for all (ui, uj) ∈ Dl(Hl(ψk))×Dl(Hr(ψk)).467

Proof Recall that τij = τUi,Uj and τ(ψk) = τ(C(·;ψk)) by definition and let k ∈468

{1, ..., d−1} and (ui, uj) ∈ Dl(Hl(ψk))×Dl(Hr(ψk)). Using Proposition 3, it implies469

(Ui, Uj) ∼ C(·;Ay(ui, uj)). As ψk = Ay(ui, uj) according to Remark 2, it follows470

that (Ui, Uj) ∼ C(·;ψk). Hence, τUi,Uj = τ(C(·;ψk)). ut471



16 Jan Górecki et al.

Algorithm 2 HAC structure determination based on τ

Input:
1) I = {1, ..., d},
2) (U1, ..., Ud) ∼ C,
3) τg ... an aggregated Kendall’s tau with an I-aggregation function g,
4) zk = uk, UC(zk) = {k}, k = 1, ..., d

The structure determination:
for k = 1, ..., d− 1 do

1. (i, j) := argmax
i∗<j∗,i∗∈I,j∗∈I

τg(UUC(zi∗ )UC(zj∗ )
)

2. UC(zd+k) := UC(zi) ∪ UC(zj)
3. I := I ∪ {d+ k}\{i, j}

end for

Output:
UC(ψk) = UC(zd+k), k = 1, ..., d− 1

Remark 3 It holds that τ(ψk) = τg(UDl(Hl(ψk))×Dl(Hr(ψk))) for a d-HAC C and472

for each k = 1, ..., d − 1. This is because, given k ∈ {1, ..., d − 1}, the values of τij473

for (ui, uj) ∈ Dl(Hl(ψk)) × Dl(Hr(ψk)) are all equal to τ(ψk), see Proposition 4,474

and g(u, ..., u) = u for all u ∈ I.475

476

Computing τ(ψk), k = 1, ..., d−1, according to Remark 3 and using Proposition477

2 leads to an alternative algorithm for HAC structure determination; see Algorithm478

2. This algorithm can be used for arbitrary d > 2 (see [19] for more details including479

an example for d = 4). It returns the sets UC(ψk), k = 1, ..., d − 1. Passing them480

to Algorithm 1, we avoid the computation of UC(ψk), k = 1, ..., d− 1 in Definition481

8 and we get the requested d-HAC structure without having to know the forms482

of the bivariate margins. Assuming a parametric family for each ψk, the θ − τ483

relationship for the given family can be used to obtain the parameters, i.e., θk =484

τ−1
θ (τ(ψk)), k = 1, ..., d− 1, where τ−1

θ denotes this θ − τ relationship, e.g., for the485

Clayton family τ−1
θ (τ) = 2τ/(1 − τ). In other words, assuming (U1, ..., Ud) ∼ C,486

where C is a d-HAC with one-parametric generators ψ1, ..., ψd−1 from the same487

family, if C is unknown but the population version of the Kendall correlation488

matrix (τij) is known, both structure and parameters of C can be obtained from489

(τij) using Algorithms 1 and 2. Based on the empirical version of the Kendall490

correlation matrix, we thus obtain the following approach for both determining491

the structure and estimating parameters of C.492

3.2 Structure determination and parameter estimation of a HAC493

Using τgn instead of τg, we can easily derive a new approach for structure de-494

termination and parameter estimation of a HAC from Algorithms 1 and 2. The495

approach is summarized in Algorithm 3. The algorithm returns the parameters496

θ̂1, ..., θ̂d−1 of the estimate Ĉ and the sets UĈ(ψk), k = 1, ..., d− 1. Passing the sets497

to Algorithm 1, we get the requested Ĉ structure.498

From Algorithm 3, the reader can see our motivation for basing the estimation499

process on Kendall’s tau. Firstly, the matrix (τnij) is computed in order to determine500

the structure of a HAC. Then, the computed values of (τnij) are reused for the501
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Algorithm 3 HAC structure and parameter estimation
Input:

1) (τnij) ... the sample version of the Kendall correlation matrix,

2) g ... an I-aggregation function,
3) I = {1, ..., d},
4) zi = ui, UĈ(zi) = {i}, θ̃i =∞, i = 1, ..., d,

5) Archimedean family based on a generator ψ, and the corresponding τ−1

Estimation:
for k = 1, ..., d− 1 do

1. (i, j) := argmax
ĩ<j̃,̃i∈I,j̃∈I

g((τn˜̃i˜̃j
)
(̃̃i,˜̃j)∈U

Ĉ
(z
ĩ
)×U

Ĉ
(z
j̃
)
)

2. θ̃d+k := τ−1
(
g((τn

ĩj̃
)(̃i,j̃)∈U

Ĉ
(zi)×UĈ(zj)

)
)

3. θ̃d+k := min{θ̃d+k, θ̃i, θ̃j}
4. zd+k := (ui, uj ;ψ) ... formal introduction of the variable zd+k
5. UĈ(zd+k) := UĈ(zi) ∪ UĈ(zj)
6. I := I ∪ {d+ k}\{i, j}

end for

Output:
θ̂k = θ̃d+k, UĈ(ψk) = UĈ(zd+k), k = 1, ..., d− 1

estimation of the parameters. The latter can be done effectively as the function502

τ−1 is known in closed form for many Archimedean families, e.g., for the Clayton503

and Gumbel families listed in Table 1, cf. [23]. As we will see in Section 4, the504

estimator is comparably fast to compute, at least if d is not too large. Theoretically,505

Spearman’s rho or Blomqvist’s beta could be considered for this task as well despite506

the fact that these rank correlation measures are much less popular in this domain.507

It is also known that Kendall’s tau works well in comparison to Blomqvist’s beta;508

see [26].509

If g is set to be the average function then τavgn (θk) = g((τn
ĩj̃

)(̃i,j̃)∈UĈ(zi)×UĈ(zj)
)510

(i, j are the indices found in Step 1 of Algorithm 3) is an unbiased estimator of511

τ(θk), and thus the structure determination is based only on unbiased estimators,512

which is another favorable property of the proposed method. Note that recently513

an approach allowing for consistent estimation of all parameters of a HAC been514

published [18]. Its comparison with the approach presented here is a topic of future515

research.516

In order to fulfill the sufficient nesting condition, the parameter θ̃d+k is trimmed517

in Step 3 in order to obtain a proper d-HAC. Note that one can allow the generators518

to be from different Archimedean families. However, this case is more complex and519

we do not address it in this paper; see [21,22].520

Note that Algorithm 3 is a variation of the algorithm for agglomerative hierar-521

chical clustering (AHC) [9, p. 414]. Defining δij = 1− τnij , δij is a commonly used522

distance between the random variables Ui, Uj . Setting g to be the aggregation func-523

tion minimum, average or maximum, the algorithm results in complete-linkage,524

average-linkage or single-linkage AHC, respectively [9, p. 414]. As many types of525

statistical software include an implementation of AHC, the implementation of the526

proposed algorithm is straightforward. Moreover, adding the dendrogram obtained527

during AHC simplifies the interpretation of the estimator; see Figure 8 in Section528

5.529
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4 Experiments on simulated data530

4.1 Design of the performed experiments531

In this section, we compare our methods for HAC estimation based on Algorithm532

3 with several methods presented in [43], which are implemented in R, see [45]. As533

we are interested in binary structured HACs, we choose for the comparison the534

methods θbin, θRML, τbin, which return binary structured HAC estimates as their535

results (note that the θRML method also allows for non-binary structured HACs536

estimation). The first two methods are based on the ML estimation technique,537

whereas the third method is based on the θ − τ relationship. Our methods are538

denoted by τmin
bin , τ

max
bin and τavgbin , i.e., the involved function g, see Algorithm 3,539

is selected to be the minimum, maximum and average, respectively. The first two540

functions are selected as they represent “extremes” of I-aggregation functions. The541

last function is selected due to the reasons mentioned in Section 3.2, i.e., if g is542

the average function, the structure determination is based on unbiased estimates543

of τ(θk), k = 1, ..., d− 1.544

The comparison is performed on simulated data for d ∈ {5, 6, 7, 9}. We se-545

lected the maximal dimension d = 9 for two reasons. The first reason is that the546

results for d > 9 do not bring any surprising information about the differences547

among the considered methods. The second reason is that, for d ≤ 9, the obtained548

structure estimate representations (described in the following paragraph) involve549

single-digit numbers only, which allows for more concise notation. We simulated550

N = 1000 samples of size n = 500 according to [23] for 4 copula models based on551

Clayton generators. Our choice of the Clayton family of generators was due to the552

intended comparison of our method with the above-mentioned methods that are553

implemented for the Gumbel and Clayton family of generators only. The Clayton554

family of generators was chosen arbitrarily from these two after we have experi-555

mented with both families and have found out that results for both of them are556

similar.557

The first considered model is ((12) 3
4
(3(45) 4

4
) 3

4
) 2

4
. The natural numbers in the558

model notation (as in [43]) are the indexes of the copula variables, i.e., 1,...5,559

the parentheses correspond to each UC(·) of individual copulas, i.e., UC(ψ1) =560

{1, 2, 3, 4, 5},UC(ψ2) = {3, 4, 5},UC(ψ3) = {1, 2},UC(ψ4) = {4, 5}, and the sub-561

scripts are the model parameters, i.e, (θ1, θ2, θ3, θ4) = (2
4 ,

3
4 ,

3
4 ,

4
4 ). Note that the562

indices of the 4 generators could be permuted arbitrarily, and our particular se-563

lection of their ordering just serves for better illustration. The other 3 models564

are given with analogously by (1((23) 5
4
(4(56) 6

4
) 5

4
) 4

4
) 2

4
, (1((23) 5

4
(4(5(67) 7

4
) 6

4
) 5

4
) 4

4
) 2

4
565

and ((1(2(34) 5
4
) 4

4
) 3

4
((56) 4

4
(7(89) 5

4
) 4

4
) 3

4
) 2

4
. The smallest difference between the pa-566

rameters is set to 1
4 and the values of the parameters are set in the way that the567

sufficient nesting condition is satisfied for each parent-child pair of the generators.568

As we discovered while experimenting with different parametrizations, a larger569

difference in the parameters could hide the impact of the bias in most of the570

methods of [43] on the structure determination, and the results obtained by dif-571

ferent methods can be similar for those parametrizations. Smaller differences than572

1
4 were not necessary as setting them to 1

4 fully reveals the impact of the bias573

and clearly shows the difference among the methods. This fact is illustrated in the574
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following subsection in the part where the methods are assessed in terms of ability575

to determine the true copula structure.576

4.2 Results of the experiments577

The results for d ∈ {5, 6} are shown in Tables 2 and 4, where the first table concerns578

the structures determined by the methods, whereas the second table concerns579

goodness-of-fit of the HACs estimated by the methods and time consumption of580

the methods. Similarly, the results for d ∈ {7, 9} are shown in Tables 3 and 5. Result581

for different models are separated by double lines. Note that all experiments were582

performed on a PC with Intel Core 2.3 GHz CPU and 4GB RAM. As θRML failed583

in most cases for d = 9 on the described hardware configuration, the result of the584

method for this dimension is not presented.585

The third column in Tables 2 and 3 shows the number of different estimated586

copula structures (denoted #d.s.) in N = 1000 runs of the considered method.587

The value gives us information on how much the resulting estimated structure588

varies for a given method and model. The lower the value is, the more stable589

the structure determination can be considered. For d = 5, 6, θbin and θRML show590

the strongest stability, whereas τbin shows the weakest stability. For d = 7, the591

situation slightly changes and θbin and τbin clearly represent two extremes – the592

first showing substantially stronger stability than the remaining methods and the593

latter represents the opposite. As the dimension increases, we observe comparably594

increasing stability for τavgbin until it reaches the best stability for d = 9. In all595

considered dimensions, we observe that τmax
bin shows slightly worse stability than596

τmin
bin and τavgbin .597

The next two columns in Tables 2 and 3 address the ability of the methods598

to determine the true copula structure. The fourth column shows the three most599

frequent structures obtained by the method (if the true structure is not one of three600

the most frequent structures, then we add it in the fourth row corresponding to the601

method) with average parameter values. The true structure is emphasized by bold602

text. The fifth column shows the frequency of the true structure in all estimated603

structures. The methods τmin
bin and τavgbin dominate in the ability to determine the604

true copula structure in all four cases (d ∈ {5, 6, 7, 9}). The τmax
bin method ranks605

as the third best, also in all four cases. The remaining methods show very poor606

ability to detect the true structure, especially for d ≥ 7. For example, for d = 7,607

θRML returned the true structure only 2 times out of 1000. For d = 9, the difference608

between our and the remaining methods is most obvious. The worst performance609

shows the θbin method, which did not return any estimate with the true structure.610

The τbin method, which returned 6.2%, is also substantially outperformed by all611

of our methods.612

The ability of the methods to determine the true copula structure is addition-613

ally illustrated in Figure 3, which shows the frequency of the true structure in 1000614

estimated structures for the considered methods, for sample sizes 10, 20, ..., 500 and615

for the differences in the parameters set consecutively to 1, 12 ,
1
3 ,

1
4 , namely for four616

5-HAC models ((12)3∗q(3(45)4∗q)3∗q)2∗q with q = 1, 12 ,
1
3 ,

1
4 , respectively. For q = 1,617

we observe that the frequency of the true structure for the considered sample sizes618

is similar for all the considered methods except the θRML method and approaches619

to 100% as the sample size increases. For θRML, the frequency never exceeds 55%620
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Table 2 The first part of the results for the copula models for d ∈ {5, 6}. The columns
contain: method denotation; total number of different estimated structures (#d.s); the 3 most
frequent estimated structures with average parameter values; frequency of the true structure
in all estimated structures (in %). The values corresponding to the true structure are in bold.

d Method #d.s. Structure(s) %
5 θbin 9 (3((12)0.77(45)1.00)0.75)0.24 78.7

((12)0.68(3(45)1.03)0.73)0.68 19
(5((12)0.78(34)0.91)0.78)0.24 0.8

θRML 9 ((12)0.71(3(45)1.01)0.78)0.53 49.7
((45)1.00(3(12)0.80)0.72)0.62 47.1
(3((12)0.89(45)0.83)0.54)0.53 1.2

τbin 20 ((12)0.81(3(45)1.01)0.93)0.89 45.3
(1(2(3(45)1.02)0.93)0.78)0.86 22.2
(2(1(3(45)1.03)0.93)0.78)0.85 20.9

τmin
bin 11 ((12)0.76(3(45)1.01)0.70)0.41 92

((12)0.75(5(34)0.92)0.74)0.40 3.4
((12)0.75(4(35)0.90)0.75)0.40 2.8

τmax
bin 15 ((12)0.77(3(45)1.01)0.80)0.59 83.6

(1(2(3(45)1.06)0.82)0.66)0.61 3.9
((12)0.75(5(34)0.92)0.87)0.60 3.3

τavgbin 11 ((12)0.76(3(45)1.01)0.75)0.50 91.3
((12)0.75(5(34)0.92)0.80)0.50 3.4
((12)0.75(4(35)0.90)0.80)0.50 2.8

6 θbin 14 (1(4((23)1.29(56)1.50)1.29)0.56)0.18 51.7
((14)0.57((23)1.25(56)1.49)1.25)0.57 24.2
(1((23)1.16(4(56)1.55)1.23)1.16)0.22 17.5

θRML 14 (1((56)1.50(4(23)1.30)1.21)1.08)0.51 47.3
(1((23)1.21(4(56)1.52)1.27)1.00)0.50 45
(1((23)1.22(5(46)1.39)1.31)1.01)0.50 2.2

τbin 26 (1(2(3(4(56)1.53)1.48)1.39)1.38)0.70 37.6
(1(3(2(4(56)1.54)1.50)1.41)1.40)0.70 36.7
(1((23)1.43(4(56)1.54)1.50)1.40)0.72 5.5

τmin
bin 21 (1((23)1.26(4(56)1.52)1.20)0.88)0.43 83.6

(1((23)1.24(5(46)1.38)1.19)0.85)0.41 5.8
(1((23)1.27(6(45)1.47)1.24)0.88)0.44 3.6

τmax
bin 22 (1((23)1.28(4(56)1.52)1.30)1.11)0.58 68.2

(1(2(3(4(56)1.52)1.31)1.16)1.12)0.57 7.4
(1(3(2(4(56)1.56)1.34)1.17)1.11)0.59 6.5

τavgbin 21 (1((23)1.26(4(56)1.52)1.25)1.00)0.50 83.1
(1((23)1.24(5(46)1.38)1.25)0.98)0.49 5.7
(1((23)1.27(6(45)1.46)1.30)1.00)0.52 3.6

and the same holds for the remaining q = 1
2 ,

1
3 ,

1
4 . This fact indicates that, from a621

certain level that is lower than 100%, the θRML method is not able to improve in622

estimation of the true structure even with increasing sample size. Decreasing in q,623

the difference between our methods and the remaining methods in the frequency624

of the true structure for the considered sample sizes increases. We also observe625

that the τmin
bin and τavgbin methods are methods that most quickly approach to 100%626

frequency of the true structure for for all q = 1, 12 ,
1
3 ,

1
4 while increasing the sam-627

ple size. The third most successful method is clearly τmin
bin for q = 1

2 ,
1
3 ,

1
4 . For628

the remaining methods and q = 1
3 ,

1
4 , the frequency of the true structure remains629

below 70%, 60%, respectively. Surprisingly, for q = 1
3 ,

1
4 , the θbin method shows630

(approximately) decreasing frequency of the true structure with increasing sample631

size for the sample sizes larger than (approximately) 200.632
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Table 3 The first part of the results for the copula models for d ∈ {7, 9}. The columns
contain: method denotation; total number of different estimated structures (#d.s); the 3 most
frequent estimated structures with average parameter values; frequency of the true structure
in all estimated structures (in %). The values corresponding to the true structure are in bold.

d Method #d.s. Structure(s) %
7 θbin 10 (1((23)1.00((45)1.01(67)1.01)0.96)0.78)0.16 82.4

((1(23)1.06)0.75((45)0.99(67)0.99)0.94)0.75 9.7
(1((67)0.88((23)1.01(45)1.05)0.91)0.87)0.16 3.1

θRML 33 ((23)1.01(1((45)1.01(67)1.01)0.58)0.57)0.56 29.2
((67)1.00((23)1.08(1(45)0.93)0.77)0.63)0.63 16.7
((45)1.00((23)1.07(1(67)0.93)0.76)0.63)0.62 15.7
((1(23)0.77)0.53((45)1.01(67)1.02)0.77)0.53 0.2

τbin 97 ((1(23)1.01)0.96((45)1.06(67)1.05)1.00)1.03 13
(1((23)1.00((45)1.06(67)1.05)1.00)0.92)0.96 8.5
((1(23)1.00)0.95(4(5(67)1.05)0.99)0.99)1.03 8

τmin
bin 22 ((1(23)1.02)0.70((45)1.01(67)1.01)0.67)0.38 87.5

((3(12)0.91)0.73((45)0.97(67)0.98)0.64)0.36 3.5
((2(13)0.91)0.75((45)1.02(67)1.02)0.68)0.37 2.6

τmax
bin 38 ((1(23)1.02)0.80((45)1.01(67)1.01)0.83)0.63 72.5

((1(23)1.04)0.80(4(5(67)1.03)0.90)0.85)0.62 3.6
(1((23)1.00((45)1.05(67)1.04)0.86)0.72)0.68 3.4

τavgbin 20 ((1(23)1.02)0.75((45)1.01(67)1.01)0.75)0.50 85.5
((3(12)0.91)0.80((45)0.99(67)0.98)0.74)0.49 3.3
((2(13)0.91)0.80((45)1.01(67)1.02)0.76)0.50 2.7

9 θbin 34 ((17)0.50((2(34)1.26)0.91((56)1.02(89)1.26)1.02)0.90)0.50 67.5
(1((2(34)1.25)0.87((56)0.96(7(89)1.28)1.00)0.95)0.87)0.13 9.4
(1((56)0.88((2(34)1.26)0.96(7(89)1.29)0.96)0.93)0.71)0.12 5.3

τbin 116 ((1(2(34)1.27)1.21)1.07(5(6(7(89)1.28)1.20)1.09)1.09)1.11 13.2
((1(2(34)1.29)1.22)1.07(6(5(7(89)1.28)1.22)1.10)1.10)1.11 12.1
(1((2(34)1.26)1.19(5(6(7(89)1.30)1.23)1.12)1.11)1.05)1.03 11.4
((1(2(34)1.26)1.22)1.09((56)1.09(7(89)1.30)1.24)1.08)1.12 6.2

τmin
bin 32 ((1(2(34)1.27)0.96)0.68((56)1.01(7(89)1.28)0.95)0.65)0.36 76.7

((1(2(34)1.24)0.91)0.66((56)1.00(9(78)1.16)0.98)0.65)0.35 4
((1(4(23)1.14)0.98)0.66((56)0.97(7(89)1.28)0.96)0.64)0.37 3.7

τmax
bin 55 ((1(2(34)1.27)1.06)0.82((56)1.02(7(89)1.28)1.05)0.85)0.65 62.5

((1(2(34)1.30)1.06)0.81(5(6(7(89)1.29)1.09)0.91)0.85)0.65 4.4
((1(2(34)1.25)1.05)0.84(6(5(7(89)1.33)1.09)0.93)0.89)0.65 3.8

τavgbin 26 ((1(2(34)1.27)1.01)0.75((56)1.01(7(89)1.28)1.00)0.75)0.50 78.7
((1(2(34)1.24)0.96)0.73((56)1.01(9(78)1.16)1.04)0.74)0.49 4.2
((1(4(23)1.14)1.03)0.73((56)0.98(7(89)1.28)1.00)0.75)0.50 3.8

Next, we assess the methods by means of goodness-of-fit. The results can be633

seen in columns 3-6 in Tables 4 and 5, where the averages and standard deviations634

of four GoF statistics are shown. The values in each row correspond to the aver-635

ages of the GoF statistics over all estimates with the structure corresponding to636

the one shown in the same row in Tables 2 and 3. The dSn corresponds directly637

to the statistics given by (15). By the lower index d in the notation, we accentuate638

the fact that this is non-aggregated, i.e, “truly” d-dimensional statistics, as the639

rest of the statistics, 2S
max
n , 2S

(K)max
n , 2S

(C)max
n , are the aggregated (using max640

function) statistics given by Definition 7 that are based on the bivariate statis-641

tics Sn, S
(K)
n , S

(C)
n , respectively. The reason for choosing the maximum function642

as the I-aggregation function g is that then this g-aggregated statistics can be643

interpreted in the way that it evaluate how the estimate fits the data according644

to its worst fitting bivariate margin. Observing the results, we see that the τavgbin645
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Table 4 The second part of the results for the copula models for d ∈ {5, 6}. The columns

contain: method denotation; GoF test statistics dSn, 2Smax
n , 2S

(K)max
n , 2S

(C)max
n ; the

average estimation time of one estimation process in s. The values corresponding to the true
structure are in bold. The values in parenthesis are the corresponding standard deviations.
The last row for each dimension and each method, denoted by false structures in the second
column, shows averages of the considered statistics over all estimates with structures different
to the true structure.

d Method dSn 2Smax
n 2S

(K)max
n 2S

(C)max
n time (in s)

5 θbin 0.18 (0.09) 0.63 (0.29) 2.11 (0.4) 0.69 (0.29) 0.079 (0.023)
0.11 (0.09) 0.38 (0.22) 0.51 (0.25) 0.35 (0.18)
0.20 (0.08) 0.76 (0.4) 2.84 (0.5) 0.82 (0.4)

false structures 0.18 (0.09) 0.64 (0.29) 2.11 (0.5) 0.69 (0.29)
θRML 0.08 (0.06) 0.31 (0.19) 0.21 (0.09) 0.27 (0.13) 0.172 (0.024)

0.10 (0.08) 0.36 (0.2) 0.50 (0.25) 0.33 (0.16)
0.08 (0.03) 0.34 (0.13) 0.45 (0.2) 0.33 (0.12)

false structures 0.10 (0.08) 0.37 (0.2) 0.50 (0.25) 0.33 (0.16)
τbin 0.25 (0.14) 0.43 (0.23) 1.22 (0.28) 0.51 (0.21) 0.190 (0.008)

0.21 (0.13) 0.40 (0.22) 0.92 (0.26) 0.44 (0.21)
0.20 (0.12) 0.37 (0.2) 0.95 (0.27) 0.42 (0.18)

false structures 0.21 (0.13) 0.40 (0.22) 0.96 (0.27) 0.45 (0.2)
τmin
bin 0.10 (0.07) 0.32 (0.18) 0.37 (0.2) 0.29 (0.15) 0.065 (0.02)

0.10 (0.08) 0.33 (0.22) 0.43 (0.18) 0.31 (0.19)
0.09 (0.04) 0.31 (0.15) 0.41 (0.14) 0.28 (0.17)

false structures 0.10 (0.06) 0.33 (0.18) 0.47 (0.22) 0.32 (0.18)
τmax
bin 0.08 (0.05) 0.30 (0.17) 0.28 (0.15) 0.26 (0.13) 0.062 (0.02)

0.09 (0.07) 0.32 (0.18) 0.33 (0.14) 0.31 (0.18)
0.09 (0.06) 0.35 (0.22) 0.31 (0.15) 0.32 (0.16)

false structures 0.09 (0.06) 0.33 (0.18) 0.36 (0.18) 0.32 (0.16)
τavgbin 0.07 (0.04) 0.29 (0.16) 0.18 (0.07) 0.26 (0.13) 0.06 (0.001)

0.07 (0.04) 0.31 (0.2) 0.20 (0.07) 0.29 (0.14)
0.07 (0.04) 0.30 (0.16) 0.19 (0.05) 0.26 (0.15)

false structures 0.07 (0.04) 0.29 (0.17) 0.20 (0.08) 0.26 (0.14)

6 θbin 0.40 (0.22) 0.72 (0.4) 1.99 (0.4) 0.87 (0.4) 0.127 (0.026)
0.13 (0.09) 0.57 (0.28) 1.74 (0.5) 0.72 (0.3)
0.19 (0.16) 0.51 (0.26) 1.20 (0.3) 0.49 (0.23)

false structures 0.32 (0.23) 0.67 (0.4) 1.92 (0.4) 0.82 (0.4)
θRML 0.09 (0.08) 0.36 (0.23) 0.31 (0.14) 0.31 (0.16) 1.5 (0.7)

0.09 (0.08) 0.34 (0.21) 0.22 (0.09) 0.28 (0.14)
0.10 (0.06) 0.33 (0.19) 0.21 (0.07) 0.26 (0.14)

false structures 0.10 (0.08) 0.37 (0.24) 0.31 (0.14) 0.32 (0.16)
τbin 0.21 (0.13) 0.39 (0.23) 0.65 (0.17) 0.45 (0.19) 0.312 (0.007)

0.19 (0.12) 0.36 (0.2) 0.65 (0.18) 0.41 (0.17)
0.17 (0.1) 0.36 (0.18) 0.69 (0.18) 0.44 (0.15)

false structures 0.20 (0.13) 0.38 (0.22) 0.65 (0.18) 0.43 (0.18)
τmin
bin 0.10 (0.07) 0.34 (0.21) 0.34 (0.14) 0.31 (0.16) 0.09 (0.002)

0.11 (0.07) 0.35 (0.18) 0.35 (0.12) 0.33 (0.15)
0.12 (0.1) 0.38 (0.21) 0.37 (0.14) 0.36 (0.14)

false structures 0.10 (0.07) 0.34 (0.19) 0.39 (0.16) 0.33 (0.15)
τmax
bin 0.08 (0.05) 0.32 (0.2) 0.27 (0.12) 0.29 (0.13) 0.096 (0.0025)

0.08 (0.04) 0.30 (0.17) 0.29 (0.11) 0.28 (0.11)
0.09 (0.05) 0.33 (0.18) 0.30 (0.12) 0.29 (0.12)

false structures 0.09 (0.06) 0.32 (0.18) 0.30 (0.11) 0.29 (0.13)
τavgbin 0.07 (0.04) 0.31 (0.19) 0.17 (0.05) 0.27 (0.13) 0.093 (0.0021)

0.07 (0.04) 0.33 (0.18) 0.18 (0.05) 0.28 (0.12)
0.08 (0.07) 0.35 (0.19) 0.18 (0.05) 0.30 (0.12)

false structures 0.07 (0.05) 0.31 (0.17) 0.18 (0.05) 0.28 (0.12)
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Table 5 The second part of the results for the copula models for d ∈ {7, 9}. The columns

contain: method denotation; GoF test statistics dSn, 2Smax
n , 2S

(K)max
n , 2S

(C)max
n ; the

average estimation time of one estimation process in s. The values corresponding to the true
structure are in bold. The values in parenthesis are the corresponding standard deviations.
The last row for each dimension and each method, denoted by false structures in the second
column, shows averages of the considered statistics over all estimates with structures different
to the true structure.

d Method dSn 2Smax
n 2S

(K)max
n 2S

(C)max
n time (in s)

7 θbin 0.14 (0.06) 0.80 (0.3) 3.01 (0.5) 0.86 (0.3) 0.190 (0.028)
0.16 (0.15) 0.51 (0.27) 0.89 (0.4) 0.49 (0.23)
0.13 (0.04) 0.74 (0.28) 3.04 (0.5) 0.81 (0.28)

false structures 0.15 (0.06) 0.81 (0.3) 3.02 (0.6) 0.87 (0.4)
θRML 0.07 (0.05) 0.42 (0.2) 0.53 (0.2) 0.39 (0.17) 7.4 (8)

0.07 (0.05) 0.43 (0.21) 0.66 (0.29) 0.42 (0.18)
0.07 (0.05) 0.45 (0.22) 0.65 (0.27) 0.42 (0.18)
0.07 (0.04) 0.34 (0.01) 0.34 (0.14) 0.26 (0.06)

false structures 0.07 (0.05) 0.44 (0.21) 0.59 (0.24) 0.41 (0.18)
τbin 0.40 (0.16) 0.62 (0.27) 2.07 (0.4) 0.80 (0.23) 0.470 (0.009)

0.33 (0.16) 0.56 (0.3) 1.43 (0.26) 0.65 (0.26)
0.41 (0.16) 0.64 (0.3) 2.03 (0.4) 0.84 (0.28)

false structures 0.36 (0.16) 0.59 (0.29) 1.75 (0.4) 0.74 (0.28)
τmin
bin 0.10 (0.06) 0.38 (0.2) 0.53 (0.22) 0.35 (0.17) 0.128 (0.003)

0.09 (0.05) 0.36 (0.13) 0.59 (0.2) 0.33 (0.12)
0.11 (0.07) 0.43 (0.18) 0.67 (0.3) 0.38 (0.16)

false structures 0.10 (0.06) 0.39 (0.16) 0.63 (0.3) 0.37 (0.16)
τmax
bin 0.07 (0.05) 0.36 (0.2) 0.43 (0.19) 0.34 (0.16) 0.129 (0.003)

0.09 (0.05) 0.46 (0.23) 0.50 (0.22) 0.43 (0.15)
0.07 (0.04) 0.33 (0.11) 0.54 (0.2) 0.34 (0.11)

false structures 0.08 (0.05) 0.37 (0.2) 0.50 (0.21) 0.35 (0.16)
τavgbin 0.04 (0.025) 0.33 (0.18) 0.22 (0.08) 0.29 (0.13) 0.135 (0.004)

0.04 (0.018) 0.32 (0.15) 0.23 (0.06) 0.28 (0.11)
0.05 (0.028) 0.36 (0.15) 0.25 (0.1) 0.29 (0.12)

false structures 0.05 (0.02) 0.33 (0.14) 0.24 (0.08) 0.29 (0.12)

9 θbin 0.08 (0.05) 0.71 (0.3) 1.71 (0.5) 0.79 (0.28) 0.467 (0.028)
0.12 (0.05) 0.98 (0.4) 3.61 (0.6) 1.04 (0.4)
0.13 (0.04) 0.99 (0.4) 3.79 (0.5) 1.05 (0.4)

false structures 0.10 (0.06) 0.79 (0.4) 2.32 (1.2) 0.87 (0.3)
τbin 0.53 (0.19) 0.75 (0.3) 2.52 (0.4) 0.99 (0.3) 0.726 (0.011)

0.51 (0.16) 0.71 (0.29) 2.65 (0.5) 1.01 (0.26)
0.46 (0.14) 0.65 (0.28) 1.96 (0.3) 0.82 (0.23)
0.51 (0.18) 0.72 (0.3) 2.60 (0.5) 0.98 (0.3)

false structures 0.49 (0.17) 0.71 (0.3) 2.22 (0.5) 0.92 (0.29)
τmin
bin 0.10 (0.05) 0.44 (0.14) 0.66 (0.21) 0.42 (0.12) 0.195 (0.004)

0.09 (0.06) 0.42 (0.23) 0.65 (0.26) 0.39 (0.2)
0.10 (0.05) 0.44 (0.14) 0.66 (0.21) 0.42 (0.12)

false structures 0.10 (0.06) 0.44 (0.2) 0.71 (0.26) 0.42 (0.19)
τmax
bin 0.07 (0.05) 0.41 (0.2) 0.54 (0.21) 0.38 (0.16) 0.198 (0.004)

0.07 (0.03) 0.40 (0.18) 0.51 (0.22) 0.40 (0.14)
0.07 (0.05) 0.41 (0.2) 0.54 (0.21) 0.38 (0.16)

false structures 0.08 (0.05) 0.43 (0.2) 0.57 (0.23) 0.40 (0.16)
τavgbin 0.03 (0.02) 0.38 (0.18) 0.25 (0.08) 0.33 (0.13) 0.205 (0.013)

0.03 (0.02) 0.37 (0.19) 0.27 (0.08) 0.32 (0.16)
0.04 (0.02) 0.40 (0.17) 0.26 (0.07) 0.35 (0.13)

false structures 0.04 (0.017) 0.39 (0.18) 0.27 (0.08) 0.34 (0.13)
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Fig. 3 The frequency of the true structure in 1000 estimated structures for the considered
methods, for sample sizes 10, 20, ..., 500 and for the differences in the parameters set consecu-
tively to 1, 1

2
, 1
3
, 1
4

, i.e., for four 5-HAC models ((12)3∗q(3(45)4∗q)3∗q)2∗q with q = 1, 1
2
, 1
3
, 1
4

,
respectively.

method dominates in GoF in all four dimensions. The methods θRML and τmax
bin646

show good results as well, but the time consumption of θRML for comparable re-647

sults is considerably higher (especially for d = 7). A surprising result shows the648

τmin
bin method. Despite it shows very good ability in estimating the true structure,649

it is ranked as the third best in GoF, i.e., it shows the results opposite to τmax
bin ,650

which is very good in GoF but is ranked as the third in the ability to estimate651

the true structure. Here, it is worth to note that τavgbin performs very good both in652

the ability to determine the true structure and in GoF. The remaining methods653

show poor results, what is additionally illustrated by the discrepancy between the654

estimated average parameter values shown in the fourth column in Tables 2 and655

3 and the true parameter values.656

The last row for each dimension and each method in Tables 4 and 5, denoted657

by false structures in the second column, shows averages of the considered statistics658

over all estimates with structures different to the true structure, say false structured659

estimates. These results allow for studying the performance of the methods when660

the true structure is misspecified. Comparing the results for the false structured661

estimates among the considered methods, we observe that the τavgbin method shows662

the lowest values for each dimension and statistic considered. The second and663

the third lowest values show alternately the θRML and τmax
bin methods for each664

d ∈ {5, 6, 7} and statistics considered. The fourth lowest values mostly shows the665



An HACs estimation approach 25

τmin
bin method. For the remaining two methods, the results are varying. Summarizing666

these results, a false structured HAC estimate fits the best to the data if it is667

obtained by the τavgbin method.668

The last column in Tables 4 and 5 shows the average computing time needed669

for a single estimation process. In this case, τmin
bin , τmax

bin , τavgbin show similar results670

that are slightly better than the binary methods θbin, τbin, whereas θRML shows671

substantially (several times) higher time consumption, particularly for d ≥ 6.672

673

Based on all experimental results presented in this section, we can rank the674

presented methods as follows:675

1. the τavgbin method only. We can claim that this method is the clear winner out of676

all here presented methods. It shows the best results in goodness-of-fit, even for677

the cases when the true structure is not determined; it is also one of the two best678

methods (together with τmin
bin ) in the evaluation of the ability to determine the679

true structure, including the analysis of this ability for different sample sizes; it680

offers comparably low run-time (together with τmin
bin and τmax

bin ); its stability in681

structure determination increases in d if compared to the remaining methods.682

2. the methods τmin
bin , τmax

bin . These methods show in some comparisons results683

similar to τavgbin , e.g., τmin
bin in the ability to determine the true structure, however,684

in other comparisons, e.g., in goodness-of-fit, these methods show worse results685

than τavgbin .686

3. the θRML method only. This method shows, on the one hand, comparably good687

results in goodness-of-fit (mostly similar to τmax
bin ), on the other hand, it show688

poor results in the ability to determine the true structure, particularly when689

analyzed for the different sample sizes, and its run-time is substantially higher690

than the run-time of all other considered methods.691

4. the methods θbin and τbin. These methods score poorly in most of the presented692

comparisons.693

Note that a similar experiment was reported in [20], where N = 100 was used694

instead. Comparing the results of both experiments, we see that they are almost695

the same for d = 5, 6. For the two higher dimensions d = 7, 9, the results show696

several rather smaller differences, mostly for rarely occurring estimated structures.697

Considering the τavgbin method, the results in both experiments for the same statis-698

tics considered, i.e., 2S
(K)max
n , 2S

(C)max
n (denoted by S

(K)
n , S

(C)
n , respectively, in699

[20]) and frequencies of the 3 most frequent estimated structures, are almost the700

same for the considered dimensions.701

5 Copula-based Bayesian classification702

5.1 Construction of copula-based Bayesian classifiers703

Bayesian classifiers belong to the most popular classifiers and are used for pat-704

tern recognition in several image processing, statistical learning and data mining705

applications. Here we briefly recall some basics for Bayesian classifiers and a way706

how copulas could be integrated in them as proposed in [47]. Later we describe707

experiments that involve Bayesian classifiers based on Gaussian copulas, ACs or708
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HACs. Note that we introduce Bayesian classifiers based on ACs and HACs here709

for the first time.710

Let Ω = {ω1, ..., ωm} be a finite set of m classes. The problem of classification is
to assign each x from the variable space Rd to a class from Ω. A Bayesian classifier
is said to assign x to the class ωi if,

gi(x) > gj(x) for all j 6= i, (28)

where gi : Rd 7→ R, i = 1, ...,m are known as discriminant functions, [47], defined by

gi(x) = P(ωi|x) =
f(x|ωi)P(ωi)∑m
j=1 f(x|ωj)P(ωj)

. (29)

Here, f : Rd 7→ [0,∞) is a probability density function (pdf) and P(ωi), i = 1, ...,m
are the prior probabilities of the classes from Ω . Since any monotonically in-
creasing function Q : R → R keeps the classification unaltered, the discriminant
functions can be simplified by gi := Q ◦ gi with Q(t) = ln(t

∑m
j=1 f(x|ωj) P(ωj))

from (29) to

gi(x) = ln f(x|ωi) + lnP(ωi). (30)

If f(x|ωi) is assumed to be, e.g., a Gaussian pdf (leading to the normal Bayesian711

classifier [9, p. 242]), all the margins are distributed according to the same type712

of distribution. It follows that the corresponding classifier does not accurately713

classify samples with marginal distributions of different types. This drawback can714

be addressed by assuming the variables to be independent. This assumption, which715

leads to the Naive Bayesian classifier [9, p. 241], does not impose any restrictions716

on the margins. However, if there exists dependence among the variables, the717

Naive Bayesian classifier is also inappropriate for the task. An elegant solution718

that overcomes the drawbacks of both mentioned approaches can be achieved by719

bringing copulas into play.720

Provided H in (1) is an absolutely continuous multivariate distribution function
with marginals F1, ..., Fd, the pdf f of H can be expressed as

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))
d∏
k=1

fk(xk), (31)

where c(u1, ..., ud) = ∂dC(u1,...,ud)
∂u1...∂ud

denotes the density of the copula C(u1, ..., ud)
and fk denotes the density of Fk, k = 1, ..., d. Returning to (30), f(x|ωi) can then
be rewritten as

f(x|ωi) = c(F1(x1|ωi), ..., Fd(xd|ωi)|ωi)
d∏
k=1

fk(xk|ωi), (32)

which turns (30) into

gi(x) = ln
(
c(F1(x1|ωi), ..., Fd(xd|ωi)|ωi))

)
+

d∑
k=1

ln(fk(xk|ωi)) + ln(P(ωi)). (33)
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In this way, the discriminant function gi is represented using three ingredients: the721

conditional copula density c(·|ωi), the conditional marginal densities f1(·|ωi), ..., fd(·|ωi),722

and the prior probability P(ωi). These ingredients do not impose any restrictions on723

each other, hence, any assumption made on the dependence structure represented724

by the copula density c(·|ωi) is unrelated to assumptions made on the marginal725

distributions f1(·|ωi), ..., fd(·|ωi). This flexibility overcomes the mentioned draw-726

backs of the normal and the Naive Bayesian classifier, which is also confirmed by727

the experimental results presented in Section 5.2.728

The training of such a copula-based Bayesian classifier can be performed for729

each class ωi, i = 1, ...m, separately as follows. Let Xi be training data correspond-730

ing to the class ωi. Compute parametric or non-parametric estimates F̂1(·|ωi), ..., F̂d(·|ωi)731

based on Xi. Compute a parametric or non-parametric estimate Ĉ(·|ωi) based732

on Xi. Compute an estimate P̂(ωi) of P(ωi) as the proportion of the class ωi in733

the training data {X1, ...,Xm}. The triplet (Ĉ(·|ωi); F̂1(·|ωi), ..., F̂d(·|ωi); P̂(ωi))734

uniquely determines the discriminant function gi.735

736

5.2 Evaluation of the accuracy of copula-based Bayesian classifiers737

In what follows, we evaluate the accuracy of such copula-based Bayesian classi-738

fiers (CBCs). Note that a similar evaluation study have been conducted only for739

Gaussian copula-based classifiers (against SVM) and only for simulated data; see740

[47]. On real-world data, all here presented CBCs are evaluated for the first time.741

We construct three types of CBCs, each type involving different classes of742

copulas:743

– a Gaussian copula-based Bayesian classifier (GCBC). For any GCBC, it is744

assumed that Ĉ(·|ωi) is a Gaussian copula. The computation of the estimator of745

Ĉ(·|ωi) is described in [5] and is implemented by the Matlab’s Statistics toolbox746

function copulafit. We used all the arguments of copulafit with their default747

values748

– an AC-based Bayesian classifier (ACBC). For any ACBC, it is assumed749

that Ĉ(·|ωi) is an AC. Given a family of generators, the copula parameter750

is estimated by the inversion of pairwise Kendall’s tau, see (10). In our ex-751

periments, we used the families listed in Table 1, however, an ACBC is not752

restricted to them. A family is considered as an input parameter of a ACBC753

and we selected the family of Ĉ(·|ωi) based on a 10-fold cross-validation. Note754

that for d ≥ 3, ACs based on the Laplace-Stieltjes transform generators are755

generally unable to model negative dependencies [22], i.e., the cases where756

τX,Y < 0 for some random variables X and Y . If X and Y are continuous757

then τ−X,Y = τX,−Y = −τX,Y . We employ this fact and invert, i.e., X := −X,758

some of the variables to reduce the negative dependence among the variables759

using Algorithm 4, i.e., in each sample Xi, i = 1, ...,m, we inverted columns760

corresponding to the indices in I obtained by Algorithm 4 with Input 1) given761

X := Xi. Note that even if we do not have a proof that it is possible to reduce,762

using this inverting process, the negative dependence to an extent that θ̂n ≥ 0763

is satisfied, we were able to get θ̂n ≥ 0 in all performed experiments.764

– a HAC-based Bayesian classifier (HACBC). For any HACBC, it is assumed765

that Ĉ(·|ωi) is an HAC. Given a family, the copula estimation is based on the766



28 Jan Górecki et al.

Algorithm 4 Inverting procedure
Input:
1) X ... a sample from the r.v. (X1, ..., Xd), Xi is continuous for all i = 1, ..., d,
2) denote by τ(X) the value of

∑
1≤i<j≤d τ

n
ij , where (τnij) is a sample version of Kendall

correlation matrix computed for X
3) denote by X−i the sample data X with the i-th column inverted
4) I = ∅

The inverting procedure:
1. τ := −∞
while τ(X) > τ do

2. τ := τ(X)

3. i := argmax
j∈{1,...,d}

τ(X−j )

4. I := I ∪ {i}
5. X := X−i

end while
6. I := I\{i} ... remove the last added index

Output:
The set of indices I

procedure described in Section 3.2, which is summarized by Algorithm 3. The767

I-aggregation function g is set to be the average function. The choice of this768

function is based on the results presented in Section 4. As for ACBCs, we use in769

our experiments the families listed in Table 1. Which particular among those 3770

families to use is considered an input parameter of a HACBC and we selected771

the family of Ĉ(·|ωi) based on a 10-fold cross-validation. As HACs based on772

the Laplace-Stieltjes transform generators are also generally unable to model773

negative dependencies, which is a property they inherit from ACs, we use the774

same inverting process for the variables as described above for the ACBC type.775

However, contrarily to the ACBC case, we were sometimes not able to reduce776

the negative dependence to an extent that θ̂k ≥ 0 for all k ∈ {1, ..., d−1}, where777

θ̂k is the parameter estimate computed in Step 2 of Algorithm 3. Consider a778

Kendall correlation matrix (τnij) ∈ [−1, 1]4×4 with τn12 = τn34 = 0.5, τn13 = τn23 =779

τn24 = 0 and τn14 = −0.1. The reader can easily see that, whichever variable is780

inverted or if all variables are left unchanged, the argument of τ−1(·) in Step 2781

of Algorithm 3 is negative at least for one k ∈ {1, 2, 3} providing g is the average782

function. For the latter case, we would obtain, using Algorithm 3, a 4-PNAC783

estimate ((12)
θ̂1

(34)
θ̂2

)
θ̂3

, where τ(θ̂1) = τ(θ̂2) = 0.5 and τ(θ̂3) = −0.025. Due784

to this fact, we use max(0, θ̂k) instead of θ̂k computed in Step 2 of Algorithm785

3.786

The estimates F̂1(·|ωi), ..., F̂d(·|ωi) of the margins are computed in the same way787

for all above-mentioned classifiers using the Kernel smoothing function ksdensity788

in Matlab with the parameter function set to cdf. Note that, if fitting a GCBC,789

these estimates are also used for transforming the data to [0, 1]. If fitting an ACBC790

or a HACBC, the transformation of the the data to [0, 1] is not necessary, because791

the corresponding copula estimation process is based just on the sample version792

of the Kendall correlation matrix.793
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These CBCs are compared in terms of accuracy with four non-copula-based794

classifiers and one copula-based classifier, which are all available in Matlab’s Sta-795

tistical toolbox. These are:796

1. the Classification and regression trees method [7], which is implemented by797

the class ClassificationTree and is referred as CART in the following. Each798

classification tree was first trained to the deepest possible level and then it799

was pruned to the optimal level, obtained by the function test, using the800

crossvalidate method;801

2. an ensemble method based on bagging of classification trees [6]. The classi-802

fier, referred as TREEBAG in the following, is implemented by the func-803

tion fitensemble with its parameters Method set to Bag and Learners set804

to ClassificationTree.template(’MinLeaf’, MinLeaf), respectively. In each805

training phase, we tuned the parameters NLearn and MinLeaf as they shown806

to be most influential on the accuracy. From all pairs (NLearn, MinLeaf) ∈807

{1, ..., 200} × {1, ..., 5}, we always chose the pair corresponding to the highest808

accuracy based on a 10-fold cross-validation.809

3. an ensemble method based on boosting of classification trees [12]. The classi-810

fier, referred as ADABOOST in the following, is implemented by the function811

fitensemble with its parameters Method set to AdaBoostM1 (for the datasets812

with two classes and AdaBoostM2 for the datasets with three or more classes)813

and Learners set to ClassificationTree.template(’MinLeaf’, MinLeaf), re-814

spectively. In each training phase, we tuned the parameters NLearn and MinLeaf815

in the same way as for TREEBAG.816

4. a support vector machine [53]. The classifier, referred as SVM in the following,817

is implemented by the function smvtrain. The parameter KernelFunction is818

set to rbf as this setting provided the highest accuracy on the considered819

datasets. In each training phase, we tuned the parameters boxconstraint and820

rbf sigma as they shown to be most influential on the accuracy. The parameters821

were tuned using unconstrained nonlinear optimization (implemented by the822

function fminsearch) in order to get the maximal accuracy computed based on823

a 10-fold cross-validation. To search for a global maximum, we always repeated824

the optimization task 5 times, each time with different initial values of the825

parameters.826

5. the Naive Bayes classifier, which is actually a CBC that assumes independence827

copulas Ĉ(·|ωi), i = 1, ...,m and is referred as NAIVE in the following. We used828

the implementation by the function fitNaiveBayes and in each training phase,829

we tuned the parameter Distribution. Its value (normal or kernel) was chosen830

based on a 10-fold cross-validation. Default parameters are used otherwise.831

All in all, we evaluate 8 classifiers on 6 commonly known datasets obtained832

from the UCI Repository [3], namely on Iris (4 variables, i.e., d = 4), BankNote (4833

variables), Vertebral (6 variables), Seeds (7 variables), BreastTissue (9 variables),834

and Wine (13 variables), as well as on the dataset Appendicitis (7 variables) from835

the KEEL-dataset repository [2], and on one dataset from a recent real-world ap-836

plication in catalysis [41] (we refer to the last dataset as Catalysis), which contains837

4 variables. The variables in the Catalysis dataset are proportions of oxides of the838

metals La, Pt, Ag, Au used during the conversion of methane and ammonia to839

hydrocyanic (HCN) acid [41]. As most of the UCI and the KEEL datasets contain840

3 classes, we have created arbitrarily 3 equi-frequent classes (low, medium, high)841



30 Jan Górecki et al.

also for the Catalysis dataset using the continuous output variable HCN yield.842

These datasets are selected in order to every considered classifier could be appli-843

cable to every dataset. Particularly, as CBCs require continuous input variables,844

all datasets include only such input variables. Moreover, as using HACBC classi-845

fiers is challenging in higher dimensions as described below in detail, we preferred846

low-dimensional datasets.847

The accuracy computation for a given classifier and a given dataset is based848

on a 10-fold cross-validation and repeated 10 times, more precisely, each classifier849

except GCBC was tuned and trained 100 times and each tuning of its parameter(s)850

involved another “inner” 10-fold cross-validation, by which we refer to the cross-851

validation that is mentioned in the description of the classifier. All computations852

were performed in Matlab on a PC with Intel Core 2.3 GHz CPU and 4GB RAM.853

Here we must mention the most serious restriction we faced when using a854

HACBC. Such classifier relies on discriminant functions gi, 1, ...,m given by (33),855

each involving the density of a HAC estimate Ĉ(·;ωi). To assign new data to one of856

the m classes, d partial derivatives for each Ĉ(·;ωi) have to be evaluated. Consider857

that complexity of such a density function quickly grows in d, which cause that858

the time consumption of its evaluation exceeds reasonable limits already for d = 5,859

particularly for families with a more complex generator, e.g., for the Frank family.860

Note that this problem is similar to the problem of computation of the statistic861

S
(C)
n mentioned in Section 2.5. To be able to evaluate our experiments in reasonable862

time, we thus projected all datasets to d = 4, i.e., before any evaluation of all863

classifiers on a dataset had started, we performed the feature selection and selected864

only 4 variables from the dataset. With such a comparison of the classifiers on such865

low-dimensional data presented below in Section 5.3, we are able to demonstrate866

capabilities of CBCs, particularly capabilities of HACBCs, when compared to other867

well-known classifiers.868

However, we are aware of the fact that such a comparison is too limited from869

the practical point of view and it discriminates against the classifiers that eas-870

ily scale up to high dimensions. For this reason, we provide another comparison871

presented below in Section 5.4, where all the datasets are considered in their orig-872

inal dimension. However, due to the above-mentioned reasons, such an evaluation873

would not be viable for HACBCs for the datasets with d > 4, hence, we again874

involve the feature selection, which is, in contrast to the first comparison, per-875

formed on training data as a part of the training phase of a HACBC just before876

tuning of its parameter. With this comparison, we aim to demonstrate applicabil-877

ity of a HACBCs for data with d > 4 provided we deal with the above-mentioned878

restriction using the feature selection.879

Note that the feature selection was performed using the function sequentialfs880

and we based the selection process on the discriminant analysis [36] implemented881

by the function classify. The reason for choosing the discriminant analysis, i.e.,882

a classifier that is different from all the evaluated classifiers, is that we tried not883

to favour any of the evaluated classifiers. The feature selection process is indeed884

performed for Appendicitis, BreastTissue, Seeds, Vertebral and Wine datasets. As885

the Iris, BankNote and Catalysis datasets have all the dimension d = 4, evaluation886

for these datasets does not involve the feature selection process and we include it887

in both above-mentioned comparisons.888

It is also important to note that the evaluation presented here is not meant889

to be an exhaustive study of possibilities of CBCs. Rather, this study should be890
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Fig. 4 The accuracy of the classifiers measured on 4-dimensional projections of the Appen-
dicitis, BreastTissue, Seeds, Vertebral and Wine datasets.

viewed as a first example considering applicability of ACs and HACs in Bayesian891

classification, which shows that such classifiers, despite the above-mentioned re-892

striction, provide simplicity and accuracy, as discussed below.893

894

5.3 The first comparison (all datasets projected to d = 4 dimensions)895

The accuracy of the classifiers computed on the datasets projected to d = 4 dimen-896

sions using the feature selection is shown in Figures 4 and 5. It can be observed897

that there is not a clear winning classifier on all the datasets, what is not surpris-898

ing in the context of the “No Free Lunch Theorem” [55]. However, some of the899

classifiers score higher substantially more often then the others. This observation900

is supported by the rankings of the classifiers in Table 6.901

Each of classifiers is ranked according to its averaged accuracy: 1 stands for902

the highest and 8 stand for the lowest averaged accuracy on the given dataset.903

Observing the averages of these ranks – the average rank row in Table 6 – four904

groups of the classifiers can be distinguished:905

– the highest-ranked group - SVM (average rank = 2.875) and HACBC (2.875);906

– the middle-high-ranked group - GCBC (3.625) and ACBC (3.875);907



32 Jan Górecki et al.

0.93

0.94

0.95

0.96

0.97

0.98

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

Iris

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

Banknote

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

Catalysis

Fig. 5 The accuracy (boxplot) of the classifiers measured on the Iris, BankNote and Catalysis
datasets.

Table 6 Rankings of the classifiers in the first comparison according to the averaged accuracy
on a given (1st column) dataset. The top-three ranks are in bold. The penultimate row shows
the average rank of a classifier. The last row shows how many times a classifier is ranked in
the top-three.
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Iris 7 5 8 6 3 1 4 2
BankNote 5 8 4 3 2 1 7 6
Catalysis 7 4 5 2 1 8 3 6

Appendicitis 8 1 3 6 7 5 2 4
BreastTissue 8 5 6 7 3 4 2 1

Seeds 5 7 6 4 3 2 8 1
Vertebral 8 7 5 6 1 4 3 2

Wine 8 5 6 7 3 4 2 1
average rank 7 5.25 5.375 5.125 2.875 3.625 3.875 2.875
# top-three 0 1 1 2 7 3 5 5

– the middle-low-ranked group - NAIVE (5.25), TREEBAG (5.375) and AD-908

ABOOST (5.125);909

– the lowest-ranked group - CART (7).910

This high-low ranking is also supported by another ranking – the top-three911

ranking, which counts how many times a classifier is ranked among the three best.912

We see that the classifiers from the highest-ranked and the middle-high-ranked913

group reside more frequently in the top-three than the classifiers from the lowest-914

ranked and the middle-low-ranked group.915

If we divide the classifiers into four groups according to their type – 1) sim-916

ple classifiers (CART and NAIVE), 2) ensemble classifiers (TREEBAG and AD-917

ABOOST) 3) SVM 4) CBCs (GCBC, ACBC and HACBC) – we can also observe918

the superiority of SVM and CBCs to the remaining types of classifiers. This is919

illustrated by the first two rows of graphs in Figure 7, which show the boxplot of920

the best 4 (according to the averaged accuracy) classifiers out of these four groups.921
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Fig. 6 The accuracy of the classifiers measured on Appendicitis, BreastTissue, Seeds, Verte-
bral and Wine datasets.. The asterisk for HACBC emphasize that the feature selection was
performed for this classifier.

We can see that SVM and the best representative of the CBCs score better than922

the best representatives of simple and ensemble classifiers on most of the datasets.923

5.4 The second comparison (all datasets in their original dimension)924

The accuracy of the classifiers computed on the datasets in their original dimension925

except for the HACBCs is shown in Figures 5 and 6. We again observe that there926

is no classifier that wins on all the datasets. In contrast to the first comparison, we927

observe that the difference between the two best ranked classifiers is substantially928

higher, which is supported by the rankings of the classifiers in Table 7.929

Now, observing the averages of the ranks in Table 7, again, four groups of the930

classifiers similar to the first comparison can be distinguished, however, with one931

important switch between the first two groups :932

– the highest-ranked group - SVM (average rank = 1.875);933

– the middle-high-ranked group - GCBC (4.5), ACBC (4) and HACBC (3.75);934

– the middle-low-ranked group - NAIVE (5.375), TREEBAG (4.375) and AD-935

ABOOST (5);936

– the lowest-ranked group - CART (7.125).937



34 Jan Górecki et al.

Table 7 Rankings of the classifiers in the second comparison according to the averaged accu-
racy on a given (1st column) dataset. The top-three ranks are in bold. The penultimate row
shows the average rank of a classifier. The last row shows how many times a classifier is ranked
in the top-three. The asterisk for HACBC emphasize that the feature selection was performed
for this classifier.
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Iris 7 5 8 6 3 1 4 2
BankNote 5 8 4 3 2 1 7 6
Catalysis 7 4 5 2 1 8 3 6

Appendicitis 7 3 1 5 4 8 6 2
BreastTissue 8 4 5 7 1 6 2 3

Seeds 7 8 4 5 1 2 6 3
Vertebral 8 6 4 5 1 7 3 2

Wine 8 5 4 7 2 3 1 6
average rank 7.125 5.375 4.375 5 1.875 4.5 4 3.75
# top-three 0 1 1 2 7 4 4 5

We see that HACBC substantially decreased in the ranking and it is now more938

convenient to put it in the middle-high-ranked group. As addressed before, due939

to the extreme time consumption of HACBCs in high dimensions, here presented940

results for these classifiers involve the feature selection, which, on the one hand,941

considerably influence their accuracy, on the other hand, allows for at least some942

applicability of HACBCs in higher dimensions. The remaining classifiers show943

results similar to the first comparison, again supported by the top-three ranking.944

The supremacy of the SVM and the CBCs to other types of classifiers is again945

observable, now illustrated by the second and the third row of the graphs in Figure946

7. We again observe that SVM and the best representative of CBCs score better947

than the best representatives of simple and ensemble classifiers on most of the948

datasets.949

950

We can conclude that, in these experiments, CBCs and particularly HACBC951

classifiers have shown to be competitive for low-dimensional data with highly-952

accurate classifiers like SVM or ensemble methods in terms of accuracy while953

keeping the produced models rather comprehensible, as also discussed in Section954

5.5. If there appears a way how to compute efficiently the density function of955

a HAC, e.g., as the simplification of the density functions for the five popular956

AC families presented in [25], it is possible that results similar to the results957

for the HACBCs in low-dimensions could also be obtained for HACBCs in high-958

dimensions.959

Here, it is important to note that none of the results presented here must be960

over-generalized and we recall that, when selecting the datasets, we selected the961

ones with all continuous input variables and we also preferred low-dimensional962

ones. Hence, the results, e.g., for ensemble methods, which are applicable to much963

wider classes of data, must be considered with this in mind.964

In further research, we will aim to confirm here presented results for the CBCs965

on substantially larger amount of datasets produced by diverse applications. More-966

over, as there exist many other copula classes, e.g., pair copulas [1], skew t-copulas967



An HACs estimation approach 35

0.82

0.84

0.86

0.88

0.9

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

Appendicitis

0.86

0.88

0.9

0.92

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

BreastTissue

0.91

0.92

0.93

0.94

0.95

0.96

C
A

R
T

A
D

A
B

O
O

S
T

S
V

M

H
A

C
B

C

Seeds

0.82

0.84

0.86

0.88

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

Vertebral

0.92

0.93

0.94

0.95

0.96

0.97

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

Wine

0.94

0.95

0.96

0.97

0.98

N
A

IV
E

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

Iris

0.98

0.985

0.99

0.995

1

C
A

R
T

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

Banknote

0.35

0.4

0.45

0.5

0.55

0.6

N
A

IV
E

A
D

A
B

O
O

S
T

S
V

M

A
C

B
C

Catalysis

0.88

0.9

0.92

0.94

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

BreastTissue

0.82

0.83

0.84

0.85

0.86

0.87

0.88

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C
*

Appendicitis

0.9

0.91

0.92

0.93

0.94

0.95

0.96

C
A

R
T

T
R

E
E

B
A

G

S
V

M

G
C

B
C

Seeds

0.82

0.84

0.86

0.88

0.9

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C
*

Vertebral

0.96

0.965

0.97

0.975

0.98

0.985

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

Wine

Fig. 7 The accuracy of the representative classifiers on all considered datasets. The first row
and the second row of the graphs correspond to the first comparison described in Section 5.3,
whereas the second row and the third row of the graphs correspond to the second comparison
described in Section 5.4. The asterisk for HACBC emphasize that the feature selection was
performed for this classifier.

[52], etc., which could be used for a CBC construction in the same way as for the968

above-mentioned copula classes, we will also consider these CBC types. To put969

CBCs more firmly into the framework of commonly used classifiers, CBCs should970

be compared with other types of classifiers, e.g., neural-networks-based classi-971

fiers, K-Nearest Neighbors, etc. Apart from accuracy and simplicity, the classifiers972

should also be compared in terms of classification run-times and memory usage.973

5.5 Note on Accuracy vs Comprehensibility974

At this point, we want to consider the typical trade-off between the accuracy and975

the comprehensibility of a classification model. In most cases, the accuracy of a976

classification model grows at the expense of its comprehensibility. In our compari-977

son, two easily comprehensible classifiers participate – CART and NAIVE – which,978
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on the one hand, produce easy to understand models and, on the other hand, score979

lower in the accuracy computed on the selected datasets. In contrast, the highly-980

accurate classifier SVM produces highly complex models which, however, are not981

so easy to understand.982

From this point of view, CBCs could be, in our opinion, considered as a good983

trade-off between those two extremes. On the one hand, we observe that the ac-984

curacy of CBSs is close to the accuracy of SVM on low-dimensional data, on the985

other hand, the models produced by the classifiers are also easily interpretable986

with some knowledge of copulas.987

Here we want to emphasize the HACBC classifiers, which produce models of988

the joint dependency among the variables in the form of a HAC. As we know,989

a HAC can be expressed as a tree-like graph. As an specific example, see Figure990

8. The figure shows the HAC parameters and structure estimates for the classes991

Setosa, Versicolor and Virginica in the Iris dataset that were obtained using Al-992

gorithm 3 with the assumption that all the generators are from the Frank family.993

The θ̂1, ..., θ̂3 are the parameter values of each HAC estimate. The dendrogram-994

like representation of the trees has the advantage that, instead of showing only995

the structure of the HAC, it also visualize the strength of dependency among the996

variables. This is because each generator node is vertically positioned according997

the value of the Kendall’s tau that corresponds to its parameter. Such a repre-998

sentation enables one (with some knowledge of HACs) to get fuller picture of the999

dependencies among the variables than the standard HAC tree-like representa-1000

tion. It is worth mentioning that the dependencies also can be obtained from such1001

graphs in a more formal way as sentences of an observational calculus, as recently1002

proposed in [28].1003

6 Conclusion1004

We proposed a new approach to structure determination and parameter estimation1005

of hierarchical Archimedean copulas, which combines the advantages of existing1006

methods in terms of the correctly determined structures ratio, the goodness-of-fit1007

of the estimates, and run-time. This has been confirmed in several experiments1008

based on simulated data in different dimensions and copula models. The pro-1009

posed method is particularly attractive in lower-dimensional (d ≤ 100) applications1010

where a good approximation and computational efficiency are crucial. However,1011

as the computation of Kendall’s tau for all pairs of data columns has complexity1012

O(d2n log n), the approach becomes demanding in high dimensions. Also note that1013

the proposed method restricts to binary structured HACs, i.e., any d-HAC esti-1014

mate has d − 1 parameters. In high dimensions, substantially less parameters are1015

often required, hence, a generalization to non-binary structured HACs should also1016

be considered, e.g., in a way proposed in [43].1017

The presented work does not explicitly consider the following:1018

1. The proposed method assumes all generators of the estimated HAC to be from1019

the same family, i.e., it assumes that a homogeneous HAC results from the es-1020

timation process. Despite the possibility of mixing different families in a HAC,1021

see [23], the estimation of such non-homogenous HACs has not been addressed1022

in the literature in detail except in [43], which, however, addresses this issue1023
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Fig. 8 The HAC estimates based on the Frank generators for the classes Setosa, Versicolor
and Virginica in Iris dataset. The θ estimates are the parameters of the generators.

only briefly without any experimental results. From the construction of our es-1024

timation method, it becomes clear that it easily extends to non-homogeneous1025

HACs as long as the sufficient nesting condition is fulfilled;1026

2. Until now, all HAC estimation methods that estimate both the structure and1027

the parameters of a HAC, incorporate either ML estimator or estimator based1028

on the inversion of Kendall’s tau. However, there exist also different types1029

of estimation methods, e.g., estimation based on Blomqvists beta, Simulated1030

maximum-likelihood estimation, Minimum distance estimation or Diagonal1031

maximum-likelihood estimation, see [26], which have been originally designed1032

for the estimation of ACs, but could also be considered in HACs estimation.1033

Our estimation method is not restricted to the estimator based on the inversion1034

of Kendall’s tau and can easily be extended for using with other estimators1035

like the above-mentioned ones.1036

Additionally, we applied the proposed method to the construction of copula-1037

based Bayesian classifiers, which are experimentally compared with other types of1038

commonly used classifiers on several real-world datasets. Two types of such classi-1039

fiers, namely the AC-based and the HAC-based Bayesian classifiers, were evaluated1040

for the first time. Due to the restrictions addressed in Section 5.2, applicability of1041

HAC-based Bayesian classifiers for high-dimensional data is limited, however, the1042

experimental results for low-dimensional data show that these classifiers are com-1043

petitive with highly-accurate classifiers like SVM or ensemble methods in terms of1044

accuracy while keeping the produced models rather comprehensible.1045
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data-mining software tool: Data set repository, integration of algorithms and experimental1053

analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17, 255–2871054

(2010)1055

3. Bache, K., Lichman, M.: UCI machine learning repository (2013). URL http://archive.1056

ics.uci.edu/ml1057

4. Berg, D.: Copula goodness-of-fit testing: an overview and power comparison. The Euro-1058

pean Journal of Finance 15(7-8), 675–701 (2009)1059
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