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Abstract. In this paper, we estimate Value at Risk for a selected portfolio using 

elliptical and hierarchical Archimedean copulas, where the latter is based on a recent 

approach to estimation of hierarchical Archimedean copulas based on the Kendall 

correlation matrix. The estimates are compared using the Kupiec's test for three 

periods of time: a period of significant movements of index prices, a period of relative 

calm in the stock market and a long term period which includes the both situation in 

the stock market. Our experimental results show that the estimates based on elliptical 

copulas are more accurate in the periods of relative calm in the stock market, whereas 

the estimates based on hierarchical Archimedean copulas are more accurate in the 

period of significant movements in the stock market. 
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1 Introduction 

Modeling portfolio returns and the subsequent estimation of the portfolio risk is one of the basic activities of 

financial institutions. Value at Risk (VaR) is frequently used to estimate the risk of future portfolio losses. 

Estimation of VaR is legally mandatory - banks are obliged by Basel II and insurance companies by Solvency II. 

The VaR is usually estimated based on historical data, and assuming constant development and constant 

characteristics of the portfolio or assets. Copulas, which appeared in connection with the Sklar’s theorem [21], are 

often used for modeling the portfolio. The theorem states that given a multivariate probability distribution, it can 

be broken down into two components: i) its univariate marginal distributions and ii) the function describing the 

dependence among the variables, i.e., its copula. 

For modeling i), there exist a number of options, e.g., the normal distribution, the skewed Student’s distribution 

[10], a mixture of normal distributions and the Lévy processes [5]. As financial time series often do not meet the 

conditions of the normal and the Student’s probability distributions of nonzero skewness (in case of the normal 

distribution also fixed kurtosis), the Lévy’s models are frequently used for these purposes, see, e.g., [1]. Hence, in 

this article, we work with one of the Lévy’s models - the normal inverse Gaussian (NIG) distribution - which is, 

as suggested in [4], appropriate for financial time series modeling. 

For modeling ii), elliptical copulas (ECs) are the most popular choice, see, e.g., their applications to finance 

described in [20] or an application dealing with modeling and testing portfolio using ECs described in [14]. 

However, as ECs are radically symmetric, they are not suitable for specific applications, e.g., they can fail to 

adequately capture dependence between extreme events, see [2, 18] for financial examples. To overcome some of 

these restrictions, there appeared several multivariate alternatives, e.g., Archimedean copulas (ACs) or their 

asymmetric generalization, hierarchical Archimedean copulas (HACs). For example, a successful application of 

HACs to collateralized debt obligations is reported in [11], which shows their advantages to ECs. 

Our research presented in this paper extends the research presented in [11] and aims to experimentally compare 

VaR estimates based on ECs and HACs. The VaR estimates are computed for three periods of time: a period of 

significant movements of index prices, a period of relative calm in the stock market and a long period which 

includes the both situation in the stock market. The results are compared using the widely known Kupiec’s test 

suggested in [17]. Note that in the estimation processes that involve HACs, we use the approach to estimation of 

HACs based on the Kendall correlation matrix that was recently proposed in [7, 9], which we implemented in 

Matlab. We choose this HAC estimation approach as it has shown desirable properties when compared to other 

HAC estimation approaches, e.g., see the experimental comparisons reported in [6, 9]. 
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The paper is structured as follows. Section 2 recalls the NIG distribution, ECs, HACs and backtesting, Section 

3 presents the experimental comparison of VaR estimates based on ECs and HACs, and Section 4 concludes. 

2 Methodology 

2.1 Normal inverse Gaussian model 

Normal inverse Gaussian (NIG) model is one of the Lévy processes with parameters 0 < |𝛽| < 𝛼, −∞ < 𝜇 and 

δ >0, and its density is given by 

𝑓𝑁𝐼𝐺(𝑥; 𝛼, 𝛽, 𝜇, 𝛿) =  
𝛼 exp(𝜁 + 𝛽(𝑥 − 𝜇)) 𝐾1(𝛼𝛿𝑞 (

𝑥 − 𝜇
𝛿

))

𝜋𝑞 (
𝑥 − 𝜇

𝛿
)

, 𝑥 ∈ ℝ,  

where 𝜁 =  𝛿√𝛼2 − 𝛽2, 𝑞(𝑦) = √1 + 𝑦2 and 𝐾1 is the modified Bessel function of the third order and index one. 

For more details on how to estimate its parameters, see, e.g., [1]. 

2.2 Copulas 

Definition 1 [19] A d-dimensional copula is a d-dimensional multivariate distribution function with standard 

uniform univariate margins.  

Copulas establish a connection between multivariate distribution functions and their univariate margins, which 

is well-known due to Sklar’s Theorem.  

Theorem 1 (Sklar’s Theorem [21]) Let F be a d-dimensional multivariate distribution function with univariate 

margins F1, …,Fd. Then there exists a copula C: [0,1]d  → [0,1] such that 

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)),                                                          (1) 

holds for all (𝑥1, … , 𝑥𝑑)  ∊  ℝ
𝑑

 , where ℝ = ℝ ∪ {−∞, +∞}. Such a function C is uniquely determined, if 

𝐹1, … , 𝐹𝑑 are all continuous. Conversely, if C is a copula and F1,…, Fd are univariate distribution functions, then 

the function F given by (1) is a multivariate distribution function with margins F1,…, Fd . 

2.3 Elliptical copulas 

ECs are based on existing multivariate elliptical distributions. The Gaussian copula is based on the multivariate 

normal distribution and the Student t-copula is based on the multivariate Student t-distribution. Formally, a 

Gaussian copula is given by [19] 

𝐶∑
𝐺𝑎(𝑢1, … , 𝑢𝑑) =  ϕ∑ (ϕ−1(𝑢1), … , ϕ−1(𝑢𝑑)), 

where ϕ is the cumulative density function of the univariate normal distribution and ϕ
∑

 is the cumulative density 

function of the multivariate normal distribution with a correlation matrix ∑. A Student t-copula is given by [19] 

𝐶𝑣,∑
𝑡 (𝑢1,…,𝑢𝑑) =  𝑡𝑣,∑(𝑡𝑣

−1(𝑢1), … , 𝑡𝑣
−1(𝑢𝑑)), 

where 𝑡𝑣 is the cumulative density function of the univariate Student t-distribution with v degrees of freedom and 

𝑡𝑣,∑ is the cumulative density function of the multivariate Student t-distribution with a correlation matrix ∑ and 

v degrees of freedom. 

2.4 Archimedean and hierarchical Archimedean copulas 

Definition 2 [11] An Archimedean generator (simply, generator) is a continuous, non-increasing function ψ : [0, 

∞] → [0,1] that satisfies ψ(0) =  1, ψ(∞) =  lim𝑡→∞ ψ(t) = 0 and that is strictly decreasing on [0, inf {𝑡 | 𝜓(𝑡)  =

 0}]. 

Definition 3 [11] Any d-copula C is called Archimedean copula (AC), if it admits the form 



𝐶(𝐮) ≔ 𝐶 (𝐮; 𝜓) ≔  𝜓(𝜓−1(𝑢1) + ⋯ +  𝜓−1(𝑢𝑑)), 𝐮 ∈  [0, 1]𝑑 , 

where 𝜓 is a generator and 𝜓−1: [0,1]  → [0, ∞] is defined by 𝜓−1(s) = inf {𝑡 | 𝜓(𝑡) = 𝑠}, 𝑠 ∈ [0, 1]. 

To derive an explicit form of an AC, we need explicit generators. In this work we use the three popular 

families of ACs presented in Table 1. 

Table 1 The three considered one-parametric Archimedean copula families with the corresponding parameter 

ranges and forms [19] 

Family θ 𝜓 (𝑡) 

Clayton (C) [-1, ∞) / {0} (1 + 𝑡)−1/𝜃 

Frank (F) (-∞, ∞) / {0} −log (1 − (1 −  e−𝜃) exp(−𝑡))/𝜃 

Gumbel (G) [1, ∞) exp (−𝑡1/𝜃) 

As it follows from the construction of ACs that all multivariate margins of the same dimensions are equal, 

which is mostly considered too restrictive in high-dimensional applications, there appeared a generalization of 

ACs, hierarchical Archimedean copulas, which allow for partial asymmetry in multivariate margins. 

Definition 4 [12] A d-dimensional copula C is called a hierarchical Archimedean copula (HAC) if it is either an 

Archimedean copula, or if it is obtained from an Archimedean copula through replacing some of its arguments 

with other hierarchical Archimedean copulas. 

It follows from Definition 4 that every AC is a HAC (but not vice versa). For more details on HACs, see, e.g., 

[11]. 

2.5 Backtesting 

Backtesting is a procedure in which the ability of a given model that estimates the future loss is evaluated. In the 

financial industry, the most commonly used model for estimation of the risk of future losses is Value at Risk 

(VaR). It expresses the maximum potential loss on the dependability of a given VaR confidence level. It is defined 

by 

𝑃𝑟(∆𝛱𝑡+∆𝑡 ≤ −𝑉𝑎𝑅𝑐,∆𝑡) = 1 − 𝑐, 

where Pr is the probability measure, ∆𝛱𝑡+∆𝑡 expresses the change in the value of a time series Πt at time t over a 

time period ∆t and 𝑉𝑎𝑅𝑐,∆𝑡 is the value of the maximum loss for the time period ∆t at a given VaR confidence 

level 𝑐 ∈ [0,1]. In this paper, 𝛱𝑡  is portfolio wealth at time t. 

Having different 𝑉𝑎𝑅𝑐,∆𝑡 estimators, their comparison is often based on so-called 01-sequence, see, e.g., [15, 

16], given for 𝑡 ∈ {1, … , 𝑛} by 

𝐼𝑡 =  {
1, 𝑖𝑓 ∆𝛱𝑡+∆𝑡 ≤ −𝑉𝑎𝑅̅̅ ̅̅ ̅̅

𝑐,∆𝑡

0, 𝑖𝑓 ∆𝛱𝑡+∆𝑡 > −𝑉𝑎𝑅̅̅ ̅̅ ̅̅
𝑐,∆𝑡

, 

where 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
𝑐,∆𝑡  an is an estimated VaR value for time t. A widely known test based on this sequence, the Kupiec’s 

test [17], is a two-sided test that tests the fit of the estimated VaR model with respect to the underestimation and 

overestimation of the risk. Given a 01-sequence (I1, …, In), the test uses the Kupiec’s likelihood ratio statistic (LR) 

given by  

𝐿𝑅 = −2 log [
𝜋𝑒𝑥

𝑛1(1 − 𝜋𝑒𝑥)𝑛0

𝜋𝑜𝑏𝑠
𝑛1 (1 − 𝜋𝑜𝑏𝑠)𝑛0

], 

where 𝜋𝑒𝑥 = 1 −  𝑐 is the expected probability of exception occurring, 𝜋𝑜𝑏𝑠 =  
𝑛1

𝑛0+𝑛1
 is the proportion of 

exceptions, 𝑛0 is the number of non-exception days (the number of “zeros” in the 01-sequence), 𝑛1 is the number 

of exception days (the number of “ones” in the 01-sequence) and 𝑛0 + 𝑛1 = 𝑛. Under the null hypothesis that 

𝜋𝑒𝑥 =  𝜋𝑜𝑏𝑠, the statistic LR is asymptotically χ2 (chi-squared) distributed with one degree of freedom. Using this 

fact and given n, the non-rejection interval for a number of exceptions 𝑛1 can be obtained for a given significance 

level α. Throughout this paper, we use α = 5%. 



3 Experiments 

Firstly, we present the data that we analyze in our study. It is a part of the Dow Jones Industrial Average (DJIA) 

dataset. We arbitrarily selected 6 well-known US companies of the dataset, namely, MSFT (Microsoft Corporation 

CSCO (Cisco Systems), NKE (Nike, Inc.), MCD (McDonald‘s), CAT (Caterpillar Inc.) and IBM (International 

Business Machines Corporation). The comparison is performed for the following three periods: 

 Period A - 1998/29/11-2010/31/12 – the long term period (n = 3042 days) 

 Period B - 2000/21/11-2004/16/11 – the period of significant movements (n = 1000 days) 

 Period C - 1994/24/07-1998/07/07 – the period of relative calm (n = 1000 days) 

For each of these periods, given a VaR confidence level c and a family of copulas, we used the following procedure 

based on the Monte Carlo method for t = 501, …, n+500 to estimate corresponding VaR values: 

1. For time t, choose the daily returns ∆𝛱𝑡−500, … , ∆𝛱𝑡−1; 

2. Estimate the parameters of the six NIG distributions using the method of moments, see [1]; 

3. Assuming an elliptical copula, estimate its parameters via the Matlab’s Statistical toolbox function copulafit. 

Assuming a HAC, estimate its parameters via our implementation of Algorithm 3 proposed in [9]; 

4. Sample 10 000 observations distributed according to the multivariate distribution with the estimated copula 

and the estimated univariate marginal distributions using the approach proposed in [11]; 

5. For each of the observations sampled in the previous step, calculate the portfolio wealth 𝛱𝑡
𝑖 , 𝑖 =

1, … , 10000 with uneven weights (= 1/6) of the assets;  

6. Order 𝛱𝑡
𝑖 , 𝑖 = 1, … , 10000; 

7. Choose 𝛱𝑡
𝑗
  as the VaR estimated for t such that 𝑗 = [10 000(1 − 𝑐)] ([y] returns the integer part of 𝑦 ∈ ℝ); 

8. Continue to t+1. 

After this process, we computed three 01-sequences corresponding to each of the considered time periods, in 

the way described in Section 2.5.  

3.1 Results 

All in all, we computed 45 different 01-sequences (5 copulas families (Gaussian, Student, HAC Clayton, HAC 

rank and HAC Gumbel) * 3 VaR confidence levels c = 85%, 95%, 99% * 3 time periods). Their characteristics 

corresponding to the Kupiec’s test are shown in Figures 1, 2 and 3. The figures show the differences between the 

expected ([𝑛 (1 − 𝑐)]) and the estimated (𝑛1) number of exceptions, and the bounds of the corresponding non-

rejection intervals (dashed lines) for the null hypothesis in the Kupiec’s test corresponding to the significance level 

α = 5%, see Section 2.5.  

 

Figure 1 The differences between the expected and the estimated number of exceptions for Period A 

In Figure 1, we observe that only the HAC Frank based VaR model is rejected for c = 85%, i.e., the 

corresponding n1  - [𝑛 (1 − 𝑐)]  is outside of the interval (-38, 40). For the remaining VaR models, the differences 

n1  - [𝑛 (1 − 𝑐)]  are close to 0. The HAC Clayton based VaR model, which is the closest to zero for c = 85%, is 

the only VaR model that is not rejected for c = 95%. The remaining VaR models overestimates the risk for this 

VaR confidence level. For c = 99%, only the Student based VaR model is not rejected. Also observe, that the HAC 

Clayton based VaR model is the only model that underestimated the risk for c = 95% and c = 99%. Generally, for 

this period, the EC based VaR models performed better than HAC based VaR models in the sense that the 

differences n1  - [𝑛 (1 − 𝑐)]  are closer to zero for the EC based VaR models than for the HAC based VaR models. 



 

Figure 2 The differences between the expected and the estimated number of exceptions for Period B 

In Figure 2, for c = 85%, we see that all the VaR models underestimate the risk and rejected. For c = 95%, only 

the HAC Frank and the HAC Gumbel based VaR models are not rejected, but again, all the considered VaR models 

underestimate the risk. For c = 99%, only the HAC Clayton based VaR model is rejected. We also observe that the 

HAC Clayton based VaR model underestimates the risk for c = 95% and c = 99%, similarly to Period A. Generally, 

on the contrary to Period A, the HAC based VaR models performed better than elliptical copula based VaR models, 

more precisely, the best (the most close to zero) or the second best (for c = 99%) VaR model is always a HAC 

based VaR model. 

 

Figure 3 The differences between the expected and the estimated number of exceptions for Period C 

In Figure 3, for c = 85%, we see that almost all VaR models overestimate the risk. We also observe that only 

the Gaussian and HAC Frank based VaR models are not rejected.  For c = 95%, all the models are not rejected and 

the EC based VaR models score better that the HAC based VaR models. For c = 99%, the Gaussian, HAC Frank 

and HAC Gumbel based VaR models are rejected. The HAC Clayton based VaR model again underestimates the 

risk for c = 95% and c = 99%. Generally, for this period, the EC based VaR models performed better than the HAC 

based VaR models, similarly to Period A. 

4 Conclusion 

This paper presented an experimental comparison of VaR models based on elliptical and hierarchical Archimedean 

copulas. The main finding, which confirm the findings reported in [11], is that that the HAC VaR models have 

been performing better for the period of significant movements (Period B). For example, the HAC Gumbel based 

VaR model is in average the best performing for this period. This finding, on the one hand, suggests that 

hierarchical Archimedean copulas are more convenient for modeling VaR in times of significant movements in 

the stock market. On the other hand, EC based VaR models were more accurate for Period A and Period C, i.e., 



for the periods in which the days of relative calm dominates over the days of significant moves in the stock market. 

Another observation is that the HAC Clayton based VaR model more or less underestimates the risk for the two 

higher VaR confidence levels for all three periods. The question closely related to these conclusion, i.e., how to 

decide when to use elliptical based and when to use HAC based VaR models, however, remains open, and we will 

consider it in further research. Also, we want to consider in further research other copula estimation approaches, 

e.g., the consistent HAC estimator suggested in [8]. 
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