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Abstract. In this work, we compare three classifiers in terms of accuracy. The 

first is a copula-based Bayesian classifier based on elliptical and Archimedean 

copulas. The remaining two are Naive Bayes and Neural Networks. Such a com-

parison, particularly for the recently proposed Archimedean copula-based Bayes-

ian classifiers, hasn’t been reported in the literature. The results show that copula-

based Bayesian classifiers are a viable alternative to Neural Networks in terms of 

accuracy while keeping the models relatively simple.  
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1 Introduction 

In machine learning, classification is the problem of identifying to which of the set of 

categories a new observation belongs, on the basis of a training set of data containing 

observations whose category membership is known. Learning relationships between 

random variables is a decisive task in the field of knowledge discovery and data mining. 

The dependence between the observed variables can be studied by means of copulas. 

Copulas are distribution functions with standard uniform univariate margins and are 

widely used particularly for studying dependence between continuously distributed ran-

dom variables; for more details on copulas, e.g., see [12]. The word copula comes from 

the latin copula, which means “a bond or a link” and was first used by Sklar [15]. De-

spite the fact that a large part of the success of copulas is attributed to finance [14], 

copulas are more and more adopted in data mining [9], [7], hydro-climatic and water-

resources [4], [10], gene analysis [18] or cluster analysis [3]. 

In this paper, we consider copula-based Bayesian classifiers (CBCs) based on ellip-

tical copulas (ECs) and Archimedean copulas (ACs). These classifiers are experimen-

tally compared on 8 real-world datasets with other two commonly known classifiers -  

Neural Networks (NN), which are appreciated for their high accuracy but which how-

ever produce complex and thus low-understandable models, and Naive Bayes (NB), 

which, as a special case of CBCs assuming the independence copula for the variables, 



produces well-understandable however less-accurate models. The research reported in 

this paper follows the research presented in [7], where CBCs are compared with Clas-

sification and regression trees, Random forests and Support vector machines. Our com-

parison complements that work with a comparison of CBCs to NN.  

The paper is structured as follows. Section 2 summarizes some needed theoretical 

concepts including ECs and ACs. Section 3 recalls CBCs. Section 4 presents the results 

of an experimental comparison of the above-mentioned classifiers based on real-world 

datasets and Section 5 concludes.  

2 Preliminaries 

2.1 Copulas 

Definition 1 A d-dimensional copula C: [0,1]𝑑 → [0,1] is a function which is a multi-

variate distribution function with uniform univariate margins on the interval [0,1].  

Copulas establish a connection between multivariate distributions and their univariate 

margins, see the following theorem. 

Theorem 1 (Sklar’s Theorem) Let F be a d-dimensional multivariate distribution 

function with univariate margins F1, …,Fd. Then there exists a copula C: [0,1]d  → [0,1] 

such that 

 𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) (1) 

holds for all (𝑥1, … , 𝑥𝑑)  ∊  ℝ
𝑑

 , where ℝ = ℝ ∪ {−∞, +∞}. Such a function C is 

uniquely determined, if 𝐹1, … , 𝐹𝑑  are all continuous. Conversely, if C is a copula and 

F1,…, Fd are univariate distribution functions, then the function F given by (1) is a 

multivariate distribution function with margins F1,…, Fd . 

Hence, Sklar’s Theorem allows to model the univariate margins and the copula of a 

multivariate distribution function separately, which allows to build very flexible class 

of multivariate distribution models. There are many parametric copula families availa-

ble, which usually have parameters that control the strength of dependence. Some pop-

ular parametric copula models are recalled below. 

2.2 Some parametric copula families 

Basic information about copula families are presented, e.g., in [12]. In this paper, we 

use two families of ECs and three families of ACs. 

Elliptical copulas 

ECs are based on existing multivariate elliptical distributions and are derived directly 

using Sklar’s Theorem. The Gaussian copula is based on the multivariate normal dis-

tribution and the Student’s t-copula is based on the multivariate Student’s t-distribution. 

Formally, a Gaussian copula is given by 

 𝐶∑
𝐺𝑎(𝑢1, … , 𝑢𝑑) =  ϕ∑ (ϕ−1(𝑢1), … , ϕ−1(𝑢𝑑)), (2) 



where ϕ is the cumulative distribution function (CDF) of the univariate normal distri-

bution and ϕ∑ is the CDF of the multivariate normal distribution with a correlation 

matrix ∑. A Student’s t-copula is given by  

 𝐶𝑣,∑
𝑡 (𝑢1,…,𝑢𝑑) =  𝑡𝑣,∑(𝑡𝑣

−1(𝑢1), … , 𝑡𝑣
−1(𝑢𝑑)), (3) 

where 𝑡𝑣 is the CDF of the univariate Student’s t-distribution with v degrees of freedom 

and 𝑡𝑣,∑ is the CDF of the multivariate Student’s t-distribution with a correlation matrix 

∑ and v degrees of freedom. 

Archimedean copulas 

Definition 2 An Archimedean generator (simply, generator) is a continuous, non-in-

creasing function  : [0, ∞] → [0,1], which satisfies ψ(0) =  1, ψ(∞) =  lim𝑡→∞ ψ(t) =
0 and which is strictly decreasing on [0, inf {𝑡 | 𝜓(𝑡)  =  0}]. 

Definition 3 Any d-copula C is called AC, if it admits the form 

 𝐶(𝐮) ≔ 𝐶 (𝐮; 𝜓) ≔  𝜓(𝜓−1(𝑢1) + ⋯ +  𝜓−1(𝑢𝑑)), 𝐮 ∈  [0, 1]𝑑,  (4) 

where 𝜓 is a generator and 𝜓−1: [0,1]  → [0, ∞] is defined by 𝜓−1(s) = inf {𝑡 𝜓(𝑡) =
𝑠}, 𝑠 ∈ [0, 1].  

To derive an explicit form of an AC, we need explicit generators. For the construction 

of CBCs described in Section 3, we use the three popular families of ACs presented in 

Table 1. For other families of ACs, e.g., see [9].  

Table 1. The three considered one-parametric Archimedean copula families with the correspond-

ing parameter ranges and forms. 

Family θ 𝜓 (𝑡) 

Clayton (C) (0, ∞) (1 + 𝑡)−1/𝜃 

Frank (F) (0, ∞) −log (1 − (1 −  e−𝜃) exp(−𝑡))/𝜃 

Gumbel (G) [1, ∞) exp (−𝑡1/𝜃) 

3 Construction of copula-based Bayesian classifiers 

We briefly recall some basics for Bayesian classifiers and a way how copulas could be 

integrated into them; see also [7], [14]. 

Let Ω = {𝜔1, … , 𝜔𝑚} be a finite set of m classes. The problem of classification is to 

assign each x from the variable space ℝ𝑑 a class from Ω. A Bayesian classifier is said 

to assign x to the class 𝜔𝑖, if 

 𝑔𝑖(𝑥) > 𝑔𝑗(𝑥)                     for all 𝑗 ≠ 𝑖, (5) 



where 𝑔𝑖: [0, ∞)𝑑 → ℝ, 𝑖 = 1, … , 𝑚  are called discriminant functions that are defined 

by 

 𝑔𝑖(𝑥) = ℙ(𝜔𝑖|𝑥) =  
𝑓 (𝑥|𝜔𝑖)ℙ(𝜔𝑖)

∑ 𝑓(𝑥|𝜔𝑗)ℙ(𝜔𝑗)𝑚
𝑗=1

,  (6) 

where f : ℝ𝑑  → [0, ∞) is a probability density function and ℙ(𝜔𝑖), 𝑖 = 1, … , 𝑚 are the 

prior probabilities of the classes from Ω. Since any monotonically increasing function 

Q : ℝ →  ℝ keeps the classification unaltered, the discriminant functions can be 

simplified by 𝑔𝑖 ∶= 𝑄 ∘ 𝑔𝑖 with 𝑄(𝑡) = ln (𝑡 ∑ 𝑓(x𝑚
𝑗=1 │𝜔𝑗)ℙ(𝜔𝑗)) from (6) to 

 𝑔𝑖(𝑥) = ln 𝑓(𝑥|𝜔𝑖) + ln ℙ(𝜔𝑖) . (7) 

Provided F given by (1) is an absolutely continuous multivariate distribution function 

with margins 𝐹1, … , 𝐹𝑑, the pdf f of F can be expressed by 

 𝑓(𝑥1, … , 𝑥𝑑) = 𝑐(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) ∏ 𝑓𝑘(𝑥𝑘)𝑑
𝑘=1 , (8) 

where 𝑐(𝑢1, … , 𝑢𝑑) =  
∂𝑑𝐶(𝑢1,…,𝑢𝑑)

∂𝑢1… ∂𝑢𝑑
  denotes the density of the copula 𝐶(𝑢1, … , 𝑢𝑑) and 

𝑓𝑘 denotes the density of 𝐹𝑘, 𝑘 = 1, … , 𝑑.  Using (8), 𝑓(𝑥|𝜔𝑖) can be rewritten to 

 𝑓(𝑥|𝜔𝑖) = 𝑐(𝐹1(𝑥1|𝜔𝑖), … , 𝐹𝑑(𝑥𝑑|𝜔𝑖)|𝜔𝑖) ∏ 𝑓𝑘(𝑥𝑘|𝑑
𝑘=1 𝜔𝑖),   (9) 

and thus (7) turns to 

 𝑔𝑖(𝑥) = ln(𝑐(𝐹1(𝑥1|𝜔𝑖), … , (𝐹𝑑(𝑥𝑑|𝜔𝑖) |𝜔𝑖))) + ∑ ln (𝑓𝑘(𝑥𝑘|𝜔𝑖)) + ln (ℙ(𝜔𝑖)).𝑑
𝑘=1  (10) 

Hence, the discriminant function 𝑔𝑖 is composed of three ingredients: the conditional 

copula density, the conditional marginal densities and the prior probability of the class 

𝜔𝑖. Note that these ingredients do not impose any restrictions on each other.  

4 Experiments 

4.1 Design on the experiments 

In this subsection, we evaluate the accuracy of 8 classifiers. Five of them, considering 

different underlying families of copulas, are CBCs, where two of them are based on 

ECs and three of them are based on ACs. More precisely, we consider: 

 Elliptical copula-based Bayesian classifiers. For these classifiers, it is assumed 

that �̂�(∙ |𝜔𝑖) is a Gaussian (denoted as ECBC(G)) or Student’s t-copula (ECBC(t)), 

respectively. The computation �̂�(∙ |𝜔𝑖) is implemented by Matlab’s Statistics and 

machine learning toolbox function copulafit with the parameter family set to 

the value Gaussian or t copula, respectively.  



 

 Archimedean copula-based Bayesian classifiers. For these classifiers, it is as-

sumed that �̂�(∙ |𝜔𝑖) is a Clayton (denoted as ACBC(C)), Gumbel (ACBC(G)) or 

Frank (ACBC(F)) copula, respectively. The copula parameter is estimated by inver-

sion of pairwise Kendall’s tau, e.g., see [4], [5], [7].  

The estimates �̂�1(∙ |𝜔𝑖), … , �̂�𝑑(∙ |𝜔𝑖) of 𝐹1(∙ |𝜔𝑖), … , 𝐹𝑑(∙ |𝜔𝑖)  in (10) are computed in 

the same way for all above-mentioned classifiers using the Kernel smoothing function 

ksdensity with the parameter function set to cdf.  

These CBCs are compared with the following classifiers available in Matlab: 

 Naive Bayes (denoted by NB). For the classifier �̂�(∙ |𝜔𝑖), 𝑖 = 1, … , 𝑚 is independ-

ence copula. For the following tt is implemented by function fitNaiveBayes and 

it is training phase, we set the parameter Distribution to the value normal 

(this classifier is denoted by NAIVE(N)) or kernel (denoted by NAIVE(K)).  

 

 Neural Networks (denoted by NN). It is a two-layer feed-forward network with 

hidden and softmax output neurons. The classifier is implemented by the function 

patternnet with the training function set to the default, i.e., the scaled conjugate 

gradient back-propagation is used. The parameter hiddenLayerSize is set to 

one of the values 5, 10 and 15 based on a 10-fold cross-validation.   

Note that if the reader is interested in a comparison of CBCs to other types of clas-

sifiers, e.g., to Classification and regression trees, Random forests or Support vector 

machines, such a comparison is reported in [7]. 

 

In summary, we evaluate these 8 classifiers on 8 commonly known datasets from 

UCI-dataset repository [2], namely on Iris (4 variables, 3 classes), BankNote (4 varia-

bles, 2 classes), Seeds (7 variables, 3 classes) and BreastTissue (9 variables, 4 classes), 

Wine (13 variables, 3 classes), and two datasets from the KEEL-dataset repository[1], 

namely Hayes-Roth (5 variables, 3 classes) and Appendicitis (7 variables, 2 classes). 

The eighth dataset, which is a results of a recent real-world application in catalysis [11], 

we the Catalysis dataset. We selected these datasets in order to all considered classifiers 

could be applicable for each of them.  

 

The accuracy computation for a given classifier and dataset is based on a 10-fold 

cross-validation and repeated 10 times. All computations were performed in Matlab on 

a PC with Intel Core i3-3220 CPU @ 3.30 GHz, 8GB RAM.  



4.2 Results of the experiments  

The accuracy of the classifiers computed for the selected datasets is shown in Fig. 1.

 

Fig. 1. The accuracy (boxplots) of the classifiers computed on the Appendicitis, BankNote, Iris, 

Hayes-Roth, BreastTissue, Seeds, Catalysis and Wine datasets. 



It can be observed in Fig. 1, that there is not a top winning classifier on all chosen 

datasets. It thus confirms the “No Free Lunch Theorem” [17]. However, one can ob-

serve that there are classifiers which scored higher more often than others. This obser-

vation is supported by rankings of the classifiers shown in Table 2. Each of the classi-

fiers is ranked according to its averaged accuracy (1 - the highest, 8 – the lowest). 

Table 2.  The rankings of the classifiers according to the averaged accuracy on a given dataset. 
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Appendicitis 5 7 4 8 5 1 2 3 

BankNote 3 2 4 6 5 8 7 1 

Iris 1 2 8 4 5 7 6 3 

Hayes-Roth 3 5 7 6 8 1 2 4 

BreastTissue 7 8 2 3 4 5 5 1 

Seeds 1 4 5 3 6 7 8 2 

Catalysis 8 7 5 1 2 3 6 4 

Wine 1 2 8 4 3 7 5 6 

average rank 3.625 4.625 5.375 4.375 4.75 4.875 5.125 3 

 

Observing the averages of the ranks – the average rank row in Table 2 - three groups 

of classifiers can be distinguished:  

─ The highest-ranked classifiers – NN (average rank = 3) and ECBC(G) (3.625); 

─ The middle-ranked classifiers – ACBC(G) (4.375), ECBC(t) (4.625), ACBC(F) 

(4.75) and NAIVE(N) (4,875); 

─ The lowest-ranked classifiers – NAIVE(K) (5.125) and ACBC(C) (5.375). 

These results show that CBCs, particularly ECBC(G), could be considered compet-

itive with the best in average performing NN. It should be also mentioned that, even if 

the CBCs based on ACs perform in average worse than the highest-ranked classifiers 

(this result corresponds to [7]), these classifiers, namely ACBC(G) and ACBC(F) are 

the best performing classifiers on the Catalysis dataset and the second best performing 

classifiers on the BreastTissue dataset, and hence could also be considered as a viable 

and simple alternative to NN.  

5 Conclusion 

In this work, elliptical and Archimedean copula-based Bayesian classifiers are experi-

mentally compared to Neural Networks and Naive Bayes in terms of accuracy for the 

first time. The results based on 8 real-world datasets have shown that copula-based 



Bayesian classifiers are, in terms of accuracy, a viable alternative to highly accurate 

Neural Networks while keeping the models relatively simple. 

In further research, we would like to extend the research presented here by involving 

other copula-based Bayesian classifiers based on, e.g., hierarchical Archimedean cop-

ulas, pair copulas, etc. These families of copulas, for which serious researching effort 

can be recently observed, e.g., see [6], [8], [16], overcome some restrictions of elliptical 

and Archimedean copulas, are flexible but more computationally demanding, see, e.g., 

the discussion concerning the computation of hierarchical Archimedean copula density 

functions in high dimensions in [7]. Nevertheless, in our opinion, bringing these fami-

lies into a play could substantially increase the accuracy of copula-based Bayesian clas-

sifiers while still keeping the models relatively simple. 

Also, the considered copula-based Bayesian classifiers, despite ranked lower than 

the neural network based classifier in the averaged accuracy, outperform it on several 

datasets. In the light of this fact, it would be desirable to consider, e.g., the relation 

between the datasets features and the ranks, or which are the subclasses of problems for 

which the copula-based classifiers perform better than other classifiers. 
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